|
|
Absolute deviation, 绝对离差
& Y3 R6 ~3 @. R; n5 r) R# | g" QAbsolute number, 绝对数/ p$ h" N( @. E# L- s) e
Absolute residuals, 绝对残差
- I. w/ D7 a% QAcceleration array, 加速度立体阵4 D% `. {; I7 {) m5 X" q
Acceleration in an arbitrary direction, 任意方向上的加速度7 u5 I+ M$ _( u+ H9 A" a
Acceleration normal, 法向加速度# O$ F& J: u- ~! e# ?5 _
Acceleration space dimension, 加速度空间的维数# S0 r) w0 F& {7 H# G3 }0 b7 F8 C
Acceleration tangential, 切向加速度8 s9 a6 n% e/ j; G/ i2 n5 }
Acceleration vector, 加速度向量' V7 I$ H6 \0 w3 N3 R1 Z
Acceptable hypothesis, 可接受假设+ q- p* q1 T1 L6 x5 e+ p) T5 i
Accumulation, 累积
- ]2 \6 Q' f# S0 i! P* o9 w4 ZAccuracy, 准确度3 U6 N% k+ ]# [ g. H r# ^* y
Actual frequency, 实际频数) G8 u* M! c7 l0 h" Y
Adaptive estimator, 自适应估计量% @. H4 }* l, o
Addition, 相加
' c+ X$ ?- N" m/ M' _Addition theorem, 加法定理
, y: Z6 O1 \) BAdditivity, 可加性
- ?5 s7 K* h! S/ ]7 Y0 U& l" L$ c, ^. LAdjusted rate, 调整率
: J# y. E- _9 `( a: NAdjusted value, 校正值, i$ Z: B+ r$ F
Admissible error, 容许误差
1 o6 t6 o7 e9 d; vAggregation, 聚集性) }* R1 _, l, _* [* S
Alternative hypothesis, 备择假设
$ v2 {$ Z9 Y! B' qAmong groups, 组间
5 I% T5 H! W7 {4 E3 Y/ [4 q* t6 X2 zAmounts, 总量2 _- Q4 |) Y; e
Analysis of correlation, 相关分析
, i, o, l9 g6 l/ sAnalysis of covariance, 协方差分析" p# D" O0 N u$ S& N( o# X
Analysis of regression, 回归分析* W, {) d. i* ^) J: w
Analysis of time series, 时间序列分析" `/ L0 u4 W" \! G# D3 \- U" _2 [8 C
Analysis of variance, 方差分析, k% Q$ ]4 C1 O3 J/ o5 q: ?
Angular transformation, 角转换
7 @! F" v3 w8 y$ a+ D+ [ANOVA (analysis of variance), 方差分析- j. L, e* r1 Q: j: L2 N% w
ANOVA Models, 方差分析模型
' p. r1 V0 _6 ]( v% \) YArcing, 弧/弧旋
$ F' n( C9 r h+ J3 ?Arcsine transformation, 反正弦变换6 R, @2 w( U& d$ e4 K7 W2 o
Area under the curve, 曲线面积: F7 u$ J$ J1 G; k. O# c
AREG , 评估从一个时间点到下一个时间点回归相关时的误差 - p4 m! f9 B, t+ f' Z: W
ARIMA, 季节和非季节性单变量模型的极大似然估计
1 x2 k F" g S& [2 C4 E5 U* {) aArithmetic grid paper, 算术格纸( h k- @1 ^- \) i! i" q
Arithmetic mean, 算术平均数
2 w+ n: c6 I# o# J6 x0 G9 f$ B2 EArrhenius relation, 艾恩尼斯关系3 v P4 ~" Q0 @5 V0 K. n2 c
Assessing fit, 拟合的评估" ~5 A$ C( S/ C& a' M
Associative laws, 结合律
& |: z% L# z) g* ^Asymmetric distribution, 非对称分布
' q# M7 |. j0 hAsymptotic bias, 渐近偏倚
9 J( v N% g Z! ]9 f+ r L4 a+ pAsymptotic efficiency, 渐近效率 z& `. \' t1 o' Y3 B7 n
Asymptotic variance, 渐近方差
! \" a+ ^+ A$ ^! W6 iAttributable risk, 归因危险度
8 T" w' H! w5 R mAttribute data, 属性资料5 B6 G7 v1 P+ w# w
Attribution, 属性
( @: s- ?8 X6 ? z/ t6 vAutocorrelation, 自相关
) c& f; Q; L7 w3 K+ EAutocorrelation of residuals, 残差的自相关) }6 m. g$ ?4 Z0 n
Average, 平均数) m8 {" M7 M1 v
Average confidence interval length, 平均置信区间长度
. ]8 f( e* k1 K/ a$ m: rAverage growth rate, 平均增长率
; U, s* }% G/ c/ R* u- K& |* rBar chart, 条形图/ [! |, I1 U" Q# j
Bar graph, 条形图
- h+ h" V1 Q. |" h6 v# VBase period, 基期
# b- \1 V9 w' I6 g, y2 m, MBayes' theorem , Bayes定理
; I- x' u# |5 Z* D/ \: r& ^Bell-shaped curve, 钟形曲线, c0 p+ m7 E1 g. _4 K! J2 k
Bernoulli distribution, 伯努力分布5 q% V2 P2 i1 V& z8 H6 j9 l
Best-trim estimator, 最好切尾估计量) X, ~( \5 S% A3 {9 g- P# R
Bias, 偏性
0 K- _4 b5 h9 t" |2 SBinary logistic regression, 二元逻辑斯蒂回归
( B. F1 f7 M/ l1 z8 ~Binomial distribution, 二项分布/ A2 e5 D0 x3 o3 _$ U
Bisquare, 双平方' @/ w$ m' a: E1 \
Bivariate Correlate, 二变量相关( a" I# G2 Y1 ]0 h
Bivariate normal distribution, 双变量正态分布
4 C: S0 d& Q8 UBivariate normal population, 双变量正态总体) q) r2 X' Y0 e/ Y2 q% ?! ?
Biweight interval, 双权区间1 C# i' j: _& ~0 d6 G8 ~0 W( t
Biweight M-estimator, 双权M估计量) A3 ~! r! j. i8 V1 N0 v; t/ M M
Block, 区组/配伍组/ u- ]( P- p3 |5 x1 p4 P0 C: h
BMDP(Biomedical computer programs), BMDP统计软件包/ c+ w! W. S7 X' u+ I
Boxplots, 箱线图/箱尾图7 c# e$ k. e; v+ T# g
Breakdown bound, 崩溃界/崩溃点
9 r0 D! Z; ?; }! B- i/ V! @Canonical correlation, 典型相关
. y& \. T7 W3 [) YCaption, 纵标目
/ @" p3 c, ]8 Y8 y' e3 Q$ h! x9 p/ JCase-control study, 病例对照研究
- D$ b8 G+ ?) Q) s9 C+ DCategorical variable, 分类变量
, B" `7 M6 o" J& o& ^) K4 W' ?Catenary, 悬链线: |/ Q: X" C' f0 V) g0 h
Cauchy distribution, 柯西分布
1 O9 y1 d4 l6 r$ f' HCause-and-effect relationship, 因果关系, u2 g i9 C3 v2 N7 ?4 U% H/ }0 u
Cell, 单元7 _7 T9 T8 k E! a; O1 l7 s
Censoring, 终检/ ?" h' i4 S/ S
Center of symmetry, 对称中心. l y" `, ]# m9 D' O. G3 E
Centering and scaling, 中心化和定标
' B0 N, P- X' m7 R) ?Central tendency, 集中趋势
0 \$ n' ~$ Q, w& @' _0 Q3 L. wCentral value, 中心值
% x( [4 F* \9 aCHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测$ Y! v4 v) C- @7 m5 k9 P+ Z
Chance, 机遇
! _! g6 z- G2 I/ P: [4 M4 {" ZChance error, 随机误差
6 t3 ]5 R' `, z( ?- w) iChance variable, 随机变量: c7 G6 U7 g+ m8 s2 u5 R
Characteristic equation, 特征方程/ |5 x$ k- H( U3 n7 i% q
Characteristic root, 特征根" s# h4 e( E# Z7 C) _+ F
Characteristic vector, 特征向量
" D5 w- R3 J+ p. t% WChebshev criterion of fit, 拟合的切比雪夫准则
7 d$ a( R9 k6 AChernoff faces, 切尔诺夫脸谱图
k, R0 O6 r9 q9 ~Chi-square test, 卡方检验/χ2检验# Y! ^2 @3 F0 a$ }) O
Choleskey decomposition, 乔洛斯基分解
. @3 e- Z* T9 U, ?Circle chart, 圆图 5 ~# V4 E9 O! m; s' T/ |
Class interval, 组距0 S7 W$ B9 P5 p' L
Class mid-value, 组中值
a1 {" N0 [! q* i4 Q8 g8 X- uClass upper limit, 组上限7 ^5 }; C: Z$ F: U. W0 ^, e
Classified variable, 分类变量
! W5 t% ^5 K0 c8 F$ f, [0 P0 kCluster analysis, 聚类分析
3 ^( \4 b3 G" ]Cluster sampling, 整群抽样
1 N8 Z. l+ k: a, k5 _) XCode, 代码
2 Q3 w% L( F3 E5 S. |( [Coded data, 编码数据+ X! S7 k. H) s, R y
Coding, 编码" h; Y% k4 |) u
Coefficient of contingency, 列联系数6 R0 D+ Q, B1 C2 Y$ j
Coefficient of determination, 决定系数! T0 i" w) @5 N+ o C
Coefficient of multiple correlation, 多重相关系数& j: X* [0 e: r$ r( u+ Y
Coefficient of partial correlation, 偏相关系数
1 I8 }" [+ m/ f% B) fCoefficient of production-moment correlation, 积差相关系数
% [% H5 {! g0 ^4 d1 W! w. m: |' ]: kCoefficient of rank correlation, 等级相关系数/ X) f- ~6 Y6 w# q) }: P
Coefficient of regression, 回归系数' J" @6 \+ g: B4 C- P6 S
Coefficient of skewness, 偏度系数# e3 \2 |( ~( j6 G' @" x, u
Coefficient of variation, 变异系数, ?! p" F( p; V/ ]: {) Q U* o- M
Cohort study, 队列研究
T7 V% p3 ?5 r kColumn, 列. D& t- P' m9 m ?" R
Column effect, 列效应3 J( @- B& F8 V3 H" |9 m
Column factor, 列因素
% u t* T1 K$ Y+ [Combination pool, 合并
$ o7 e) e! O" B4 U+ W Q+ j: c* V. eCombinative table, 组合表2 v+ }2 Z. K8 G# p p$ Z
Common factor, 共性因子: j0 x1 y8 N4 y, z- A4 I+ l4 y
Common regression coefficient, 公共回归系数7 o* ?! i; d8 e! M5 O: O9 q8 {
Common value, 共同值+ v1 o3 ]/ b3 v
Common variance, 公共方差3 O2 f0 E+ r Z3 w* R" [: J
Common variation, 公共变异0 w# V6 w$ g5 f2 X6 L
Communality variance, 共性方差
, `6 Q9 ?) K+ g4 C- f- H" RComparability, 可比性
) U7 j+ W. T- J& EComparison of bathes, 批比较$ J! \2 G& |# e% O/ H1 u+ m7 J8 q
Comparison value, 比较值# C! z7 z, I8 \* n
Compartment model, 分部模型
" @) o% F# t0 f+ l7 }: Z1 j5 L7 wCompassion, 伸缩& {$ S/ r: Z# Y' L
Complement of an event, 补事件3 a) p5 L, A9 K) o
Complete association, 完全正相关( E5 q2 o! h0 j! R, x( y
Complete dissociation, 完全不相关
6 m( d; [/ U9 w/ G4 FComplete statistics, 完备统计量! X% D$ g& H. r. w. G, d+ C( ~
Completely randomized design, 完全随机化设计
, n0 [/ M! t! B( MComposite event, 联合事件
) W) Z* v0 Z6 g% a- r. \Composite events, 复合事件
4 K& l7 d. ]4 iConcavity, 凹性; V4 W# E5 R) v$ e! z
Conditional expectation, 条件期望9 o2 C2 K+ P! H. ]$ h
Conditional likelihood, 条件似然6 e2 z. v# g1 C# d
Conditional probability, 条件概率: p' }; u% [6 [9 _1 T- q. H$ \7 Z
Conditionally linear, 依条件线性
+ D4 S5 l9 s: y* g# }9 nConfidence interval, 置信区间2 j/ ]6 Q/ ?+ _/ W# {( n; _
Confidence limit, 置信限4 u' ?9 L7 g: O( W* `
Confidence lower limit, 置信下限/ f% O7 g, r' P
Confidence upper limit, 置信上限
6 m" ~* F" G7 K- C* lConfirmatory Factor Analysis , 验证性因子分析2 o0 k w( Z! Z+ J/ {& W( N3 _
Confirmatory research, 证实性实验研究
) A0 n6 {/ e; rConfounding factor, 混杂因素
. I) V5 Q& @3 h! R+ ^: DConjoint, 联合分析0 I4 N1 S5 c. O1 K
Consistency, 相合性
- h2 W4 ]6 w" P/ FConsistency check, 一致性检验
5 _3 g8 s7 E% B k2 s: M0 E1 ?Consistent asymptotically normal estimate, 相合渐近正态估计9 \3 e* H! V0 G; V, F$ ~+ U
Consistent estimate, 相合估计
$ a1 D4 c; x3 H0 A0 W* [Constrained nonlinear regression, 受约束非线性回归6 }0 Z7 J. } F! u) t) y: k' u
Constraint, 约束
1 Z% b! i6 Q$ @6 cContaminated distribution, 污染分布) b1 g% E( `9 D) |2 Y
Contaminated Gausssian, 污染高斯分布. e- o7 ^# V; J4 b6 e3 G. ^
Contaminated normal distribution, 污染正态分布
% y& B8 X, B& w: A0 `$ xContamination, 污染
- x4 {! r$ k. H$ |- u7 t8 n# w# ?Contamination model, 污染模型
- U2 F9 M% D% I7 u* `Contingency table, 列联表
3 `! ~( L# U% q' F, I5 cContour, 边界线
7 I- R# H$ D* e+ w# S4 OContribution rate, 贡献率; e1 q( o* {; J0 }3 \! A% H
Control, 对照
& P1 T3 \; N: U& i6 E0 ^Controlled experiments, 对照实验9 N6 S+ Q; T* K, w
Conventional depth, 常规深度
! ?* q- {( D5 g, ~Convolution, 卷积" d2 G+ F9 q; s, i8 A/ o7 g3 j
Corrected factor, 校正因子
7 @( x+ m# l4 \& i+ g& C, m7 {* }Corrected mean, 校正均值% s. D' [% X2 t
Correction coefficient, 校正系数
$ \2 M6 T# b( Y7 F" o% Q7 RCorrectness, 正确性6 l' [/ s) c, r7 a9 J! {
Correlation coefficient, 相关系数
* ]# ]0 d* @$ q4 N1 sCorrelation index, 相关指数
. M \8 U- z. ACorrespondence, 对应
* }. x/ l# c% i0 n- E6 V4 \Counting, 计数
+ c2 H' z$ T0 u6 @( OCounts, 计数/频数
7 P5 j- n- ?& F. A7 q" VCovariance, 协方差/ @/ |" W/ L/ C" N
Covariant, 共变 " [' @# h* o* U+ K' f1 ?
Cox Regression, Cox回归
3 ? G& ]' K' n) h$ D9 M" o/ C8 D+ R$ D5 i- OCriteria for fitting, 拟合准则
% T) e* X" y& VCriteria of least squares, 最小二乘准则7 d1 \; Q4 I1 w S- W
Critical ratio, 临界比, v1 C7 e7 j$ P; Y
Critical region, 拒绝域
1 W- U4 L6 h( F. T& NCritical value, 临界值1 s' \/ v" V* [+ z
Cross-over design, 交叉设计
) P6 m. k+ ~/ K; c6 n7 q5 n6 mCross-section analysis, 横断面分析/ z' D/ b( {( v' h: B" M
Cross-section survey, 横断面调查
. c& x1 {3 a, a# {% z& r) S( UCrosstabs , 交叉表 ' a: J& v6 n! J0 r) i/ S
Cross-tabulation table, 复合表
0 t3 T6 M" m( w* ?% ^% [. e ACube root, 立方根! _( H9 v( S- O$ S" U B
Cumulative distribution function, 分布函数6 U& I: j& i. t0 |! L D
Cumulative probability, 累计概率, T3 p8 Q7 b i- b+ y
Curvature, 曲率/弯曲
h7 y# K) T( r) OCurvature, 曲率( G/ f9 u2 M9 L/ Q( B. W2 e
Curve fit , 曲线拟和
0 S# H- f. Q" a* N% J2 n0 a2 FCurve fitting, 曲线拟合
+ a- ]6 z/ {" z4 G- t9 zCurvilinear regression, 曲线回归4 F5 K8 k [0 ^+ \; V. H* R
Curvilinear relation, 曲线关系( L% k" `' O6 c! H2 y5 C- l
Cut-and-try method, 尝试法
. E. W% O$ h' l% z5 U' T& X5 @Cycle, 周期, W: v: Y1 B: X% A+ T& r0 ]$ F$ E
Cyclist, 周期性4 m2 J8 w* u( h* v: ~6 G+ g
D test, D检验
2 C; L2 R/ k" MData acquisition, 资料收集( b. C3 }% P& M/ l
Data bank, 数据库4 s: p" g: @, ~5 d$ d5 T z; L, r
Data capacity, 数据容量4 E" w6 [9 p) C2 s2 Q. W3 R x
Data deficiencies, 数据缺乏
; k0 O" |5 \4 m- |Data handling, 数据处理0 E L+ d! \ M- I. ~: f) A2 K% J
Data manipulation, 数据处理- n' C. g( h) {7 U. G9 `
Data processing, 数据处理
3 f1 B8 v0 L2 u( X' C* tData reduction, 数据缩减
9 Z# b/ g* ~8 G7 U1 ZData set, 数据集 o' m& x5 [% [6 @" g
Data sources, 数据来源
2 P( u2 T0 ?5 \+ {2 p6 ^Data transformation, 数据变换* S8 u; F0 _9 r' w: b3 E9 C# F
Data validity, 数据有效性0 ]; D& ?7 X8 m' e5 O
Data-in, 数据输入
- K9 j: n$ ]0 {Data-out, 数据输出; |8 S6 W5 k- Q+ W
Dead time, 停滞期
' O; j- C7 E' u) O: {. KDegree of freedom, 自由度: H8 m, n$ d2 U' w
Degree of precision, 精密度" w8 c0 d6 O: M+ Q/ G6 `& W
Degree of reliability, 可靠性程度2 c" Q1 O3 K, o. g
Degression, 递减
: ^4 _0 G" }- H* b- D( K& YDensity function, 密度函数* d. n4 w4 g9 V6 Z3 X' t
Density of data points, 数据点的密度5 t* Y$ Y. b' D; g/ [# ?+ V
Dependent variable, 应变量/依变量/因变量
5 r @) S: r) t3 eDependent variable, 因变量
) x; @# N) g* U0 zDepth, 深度
5 R6 l: y/ l) g9 {% a3 T6 d2 l3 V% hDerivative matrix, 导数矩阵
8 f5 s: p0 G# x! @2 WDerivative-free methods, 无导数方法
$ A) X+ K4 `& iDesign, 设计
4 Z& O0 Y6 a* Y8 w1 }9 XDeterminacy, 确定性4 N7 Y, c: T/ o& e# t: ~3 [! y
Determinant, 行列式2 Z* W3 o8 ?( g. d
Determinant, 决定因素; `& V# `% {/ A3 d4 A
Deviation, 离差
! H/ d* r3 a$ N, b" P ADeviation from average, 离均差
2 s2 y1 E/ ~$ B X' K7 JDiagnostic plot, 诊断图 U& U- t# D1 U
Dichotomous variable, 二分变量
" C7 p7 f$ `% ~9 L- A. G& E* W. SDifferential equation, 微分方程
$ X" I9 }5 Y2 e$ C6 b- Q0 V: q0 `Direct standardization, 直接标准化法2 ~) O7 @0 j8 \ B
Discrete variable, 离散型变量
# `5 t; a2 D2 ]' d9 Z& ZDISCRIMINANT, 判断
2 n1 E* o; S2 S1 pDiscriminant analysis, 判别分析; G: Y( S( M* _( C+ v& \8 B' v% B6 Z
Discriminant coefficient, 判别系数( W' k8 p; t0 k* @. G5 T$ V( ?
Discriminant function, 判别值' t+ a1 @; X; A, e% o; f, }
Dispersion, 散布/分散度& k2 S. j. { q9 l7 e5 }( p: Y9 A* L
Disproportional, 不成比例的$ ~: E. H9 S5 ], G+ |5 f+ O
Disproportionate sub-class numbers, 不成比例次级组含量4 y" P* }0 f# X1 _
Distribution free, 分布无关性/免分布' e& T4 d# V) M( y7 S/ G, M
Distribution shape, 分布形状
2 @0 V, @0 M+ V0 P6 W/ {& V. b$ sDistribution-free method, 任意分布法7 w" B7 C) w1 R( p
Distributive laws, 分配律4 M8 K- S# c& i5 ^( ~6 T$ R1 Z
Disturbance, 随机扰动项
! p0 _+ a! q! k. D3 K8 o$ wDose response curve, 剂量反应曲线" [. {8 ~. U0 r) B' s0 q% w
Double blind method, 双盲法
. v0 Q# l' \. o& [4 t% L gDouble blind trial, 双盲试验
& }5 ^* p ^2 {; c1 l4 d7 a( hDouble exponential distribution, 双指数分布
* A$ M$ K, O8 o' }Double logarithmic, 双对数
, _# x! c7 z' R: S1 X2 H. B9 KDownward rank, 降秩& k" Q4 e: l, d; y3 d4 g& N
Dual-space plot, 对偶空间图. V" y5 s9 B/ b& a/ Q
DUD, 无导数方法5 z# P% R; j9 I1 d, F, v) n3 s
Duncan's new multiple range method, 新复极差法/Duncan新法
: g9 U! v! X( N9 F( P) I8 [0 QEffect, 实验效应
/ E% B4 r$ A r7 AEigenvalue, 特征值
+ M- `" G. L9 S) B: rEigenvector, 特征向量* g7 D) m. j+ v3 w9 L e# M
Ellipse, 椭圆6 W- Q9 A! G/ r, D6 [
Empirical distribution, 经验分布4 a+ T1 d- [0 O |) z( T2 y
Empirical probability, 经验概率单位* {4 I: k- W" P6 d& B& z5 D
Enumeration data, 计数资料$ B3 n+ _6 Q- V" ^ H
Equal sun-class number, 相等次级组含量
2 I. y7 V% ]& T9 B9 y( J9 a uEqually likely, 等可能4 M( ~6 p9 E o- F( o
Equivariance, 同变性: i# @9 D' z& ?* \% B i3 O
Error, 误差/错误% |- _: b" y; ^; _- b
Error of estimate, 估计误差
- W4 w6 r Z, oError type I, 第一类错误3 X% f: p3 x6 @- h
Error type II, 第二类错误
* t) F ?4 R9 b; ^/ W0 wEstimand, 被估量
, n0 Q3 L4 K6 U _: yEstimated error mean squares, 估计误差均方1 C% ^* \& n* r( V
Estimated error sum of squares, 估计误差平方和
+ ^& t" I0 J$ D. dEuclidean distance, 欧式距离0 g6 A, S5 o& P) k t3 B- z0 O7 J0 p
Event, 事件
7 H/ O0 _& ]4 X, W$ c* N% SEvent, 事件
. h# `) O, b% F* m* HExceptional data point, 异常数据点8 Z# l0 i4 ?2 w/ \6 c5 U
Expectation plane, 期望平面5 \. G. e9 w' x+ ]' P P1 x K
Expectation surface, 期望曲面5 U& q1 r \. U
Expected values, 期望值
8 K3 u4 v, K* u9 c; s8 Q2 D3 ?) B" OExperiment, 实验2 F- E' z! Y0 g! w/ E6 K& E2 j
Experimental sampling, 试验抽样5 |) i; q, W8 n' C& U0 m
Experimental unit, 试验单位7 _ R+ T% b, s: X
Explanatory variable, 说明变量
- n- w# S' s* n+ TExploratory data analysis, 探索性数据分析! W2 I# T: Z: Y- F2 Q ]
Explore Summarize, 探索-摘要) @$ ?: D4 [2 E, _; Z8 f
Exponential curve, 指数曲线
% J/ L3 Q' c0 p- i+ P7 I/ HExponential growth, 指数式增长
# H) N! h) V1 B/ U4 w' yEXSMOOTH, 指数平滑方法
# R. f# u2 Q9 r* v! UExtended fit, 扩充拟合9 W# \2 a3 I: Q; @& O6 u& N
Extra parameter, 附加参数 ?% }) d( K. N) T( ]- ^8 B
Extrapolation, 外推法4 D: U4 E4 A+ M5 h+ K7 ^8 m( y' U1 b
Extreme observation, 末端观测值: r- |; L2 t4 e4 L3 D7 m
Extremes, 极端值/极值
s+ `$ ]# L; o, r6 ZF distribution, F分布
8 Q& J! ]; G' o" m, s4 F6 \2 AF test, F检验
1 y( J8 r$ X! j$ e3 X% }, qFactor, 因素/因子
5 _1 `5 V) {+ v/ Q/ q! m& M, Y) m# wFactor analysis, 因子分析5 R0 A- S! n& O+ k) M+ Y& K
Factor Analysis, 因子分析& C( |: w! A+ Y0 _3 Q1 ~$ m( x
Factor score, 因子得分
h+ k! c. a% O; SFactorial, 阶乘
. I2 V: i l5 Q- |! dFactorial design, 析因试验设计
8 [6 O6 {1 c, _ X+ JFalse negative, 假阴性7 T# G; D3 ]4 \0 C; @( W
False negative error, 假阴性错误; s( C' {6 e! r
Family of distributions, 分布族
- z& h4 q. w1 N3 GFamily of estimators, 估计量族
3 i: F7 Y/ I& W3 a' U HFanning, 扇面. @& O5 K# ~: n
Fatality rate, 病死率
4 }. a( z- a" Z E: {Field investigation, 现场调查
9 T! j2 F% S& \1 ^2 J! iField survey, 现场调查' ~4 K' h3 h \- i' E8 W; w! X
Finite population, 有限总体
( w) ~; ~2 o6 n; n0 yFinite-sample, 有限样本- c0 I) x' R; T) K4 }4 s# r
First derivative, 一阶导数0 d* N$ N9 q4 C2 ^" T" f( b
First principal component, 第一主成分
0 I. C, @' [) @' z, D$ s& SFirst quartile, 第一四分位数 W! j. s. [8 a% l1 a) J' R
Fisher information, 费雪信息量6 S9 Q ^0 u% `5 S
Fitted value, 拟合值
, S% u, e) R9 ]# A2 hFitting a curve, 曲线拟合1 Z1 e$ V9 F7 R; Q+ z
Fixed base, 定基
: {4 n0 n/ |4 P$ e9 t2 R3 V2 _7 C6 ]Fluctuation, 随机起伏1 w9 f) x2 w+ m/ K! V: H2 V
Forecast, 预测0 X* }1 B( T6 U% ?9 n) Z; z) j
Four fold table, 四格表
& ~! [+ }& E6 \, P3 K6 U" {Fourth, 四分点
, [& s* a c- I0 _$ {" zFraction blow, 左侧比率: r% ~2 u6 J; t- f( l# ]$ w2 I
Fractional error, 相对误差
: S8 o. |% \! R+ w& k! [Frequency, 频率
. l; D L8 ?* P9 O: v# aFrequency polygon, 频数多边图
6 J; v% ]7 J% cFrontier point, 界限点
& ^3 D6 ?# d+ ?- T$ H1 i" ]Function relationship, 泛函关系& |# K0 w5 h6 R3 Z a+ S! \+ o
Gamma distribution, 伽玛分布. E: x& j$ C$ e! n% g! K3 i
Gauss increment, 高斯增量
F' @" a+ g" C7 RGaussian distribution, 高斯分布/正态分布
) E6 r8 D' n# ~' Q+ Q& F4 S LGauss-Newton increment, 高斯-牛顿增量! l: P3 u: h) p1 @3 o# b6 Z
General census, 全面普查$ ]! z/ o' |) Q* _+ h4 r; d
GENLOG (Generalized liner models), 广义线性模型 . {; j; j8 \9 O6 ?, g9 m ]
Geometric mean, 几何平均数& J$ ]" S3 `- w& L' C
Gini's mean difference, 基尼均差
( n5 m' c' v$ I! X! T8 GGLM (General liner models), 一般线性模型
8 A7 \ Z2 O. F6 lGoodness of fit, 拟和优度/配合度
0 o0 o; {* t3 T4 UGradient of determinant, 行列式的梯度
4 ~! N' U: l; b; z8 ^Graeco-Latin square, 希腊拉丁方8 p- D! ^& D) ?1 F. P
Grand mean, 总均值
* C; S) i0 `& Q: k2 S9 i( h$ d! O0 ZGross errors, 重大错误
) E& x& h$ ~8 a. W0 u+ T |Gross-error sensitivity, 大错敏感度1 S- I6 @0 X6 V+ T2 a6 a
Group averages, 分组平均
* w1 f c: y$ W& l( o, UGrouped data, 分组资料. i9 T' M, |: W% _
Guessed mean, 假定平均数
1 w0 @& N0 S) t* oHalf-life, 半衰期
G$ `$ T2 K e3 ^! l* { o+ t2 UHampel M-estimators, 汉佩尔M估计量- E' ?. \4 f4 r! g+ V) ]+ ]
Happenstance, 偶然事件
1 c! M z/ y2 l/ q2 yHarmonic mean, 调和均数/ b6 ?2 j0 f* m$ X2 C
Hazard function, 风险均数& g3 a* R6 g! e+ [0 w$ L" O
Hazard rate, 风险率
1 D, |) o6 W( o9 G7 ]Heading, 标目 ; S$ K( q' ]- ]0 j1 P+ n$ l
Heavy-tailed distribution, 重尾分布/ k8 P6 H6 M( w o- j$ F1 P
Hessian array, 海森立体阵/ `/ n% p# ^8 y0 C: g+ N
Heterogeneity, 不同质% `! t$ G8 j1 { ], }1 M. @
Heterogeneity of variance, 方差不齐 ( e- P f6 W7 J" c# k' h) g
Hierarchical classification, 组内分组: h2 X& y- @" Z1 i: ^9 c
Hierarchical clustering method, 系统聚类法- N2 r* S9 G: L/ I5 c: R6 i# w( A. q
High-leverage point, 高杠杆率点
' s6 N0 a# u3 oHILOGLINEAR, 多维列联表的层次对数线性模型
: O# O- f7 W) m, i) \- _7 i1 s, ^Hinge, 折叶点* l0 N9 z$ M9 t8 b) e+ H
Histogram, 直方图
3 z! Q1 \# `. r' @9 V& B* W uHistorical cohort study, 历史性队列研究
8 d/ W/ k) V. S6 q$ VHoles, 空洞7 _; A: H3 H4 R. [
HOMALS, 多重响应分析
) _* S, F- F9 s: hHomogeneity of variance, 方差齐性
3 T: |* q4 I3 e7 o0 [ xHomogeneity test, 齐性检验
3 Z6 E5 n; [+ p0 bHuber M-estimators, 休伯M估计量$ K# x0 d& R; @/ e, \% m4 N0 M
Hyperbola, 双曲线4 o! @/ z* L2 l" ~
Hypothesis testing, 假设检验7 [: T/ c {& s, ~7 I0 b/ y0 x* i+ c
Hypothetical universe, 假设总体: U2 `0 _8 P* n# v
Impossible event, 不可能事件
8 T/ N$ ^' x. o( m. h& S7 ] \* L CIndependence, 独立性
9 N" B( C: \* N, D2 mIndependent variable, 自变量! ^/ ~) }9 \4 n+ `+ j* @3 h* s
Index, 指标/指数( S3 a. y0 `1 ]
Indirect standardization, 间接标准化法
* Z/ h8 q( F& QIndividual, 个体
1 |1 { Q- U3 r2 Z) q' {2 ZInference band, 推断带$ X% ~& _. l/ g/ W1 Q" {/ R+ q
Infinite population, 无限总体2 Q3 u9 E, _6 y, p: _* `; R$ O
Infinitely great, 无穷大
8 ~' ?) e2 Y; Q' W% j# Q' bInfinitely small, 无穷小
+ [/ j4 j7 m; j5 VInfluence curve, 影响曲线& y, s& m4 Y; [* s& b; t, W
Information capacity, 信息容量
2 h! t' N) d4 W) Z" E2 e" X' I' BInitial condition, 初始条件! n# S4 m7 }9 G. F/ e$ m: T# ~' N; t0 ], L
Initial estimate, 初始估计值
9 }; \. M, P2 ?9 _2 iInitial level, 最初水平' W4 y2 x3 M5 N# W% ]7 A
Interaction, 交互作用" D: H: A) {3 R& U
Interaction terms, 交互作用项
/ ?8 a0 V0 Q. g3 vIntercept, 截距7 m" E( U$ g5 o4 t; x, Z
Interpolation, 内插法# X' M+ L: _. y5 ~ i Y- H
Interquartile range, 四分位距! _. f6 R% W; F s# b* _
Interval estimation, 区间估计: M r$ G4 D, P5 S4 T
Intervals of equal probability, 等概率区间) P; ^& i& C# J/ z8 o! Z2 R* ~
Intrinsic curvature, 固有曲率
6 b5 a: H6 r3 K, ]6 i% x5 y$ ZInvariance, 不变性
- H4 I/ E& O9 t) D1 o7 Y3 YInverse matrix, 逆矩阵2 W, D7 M- I+ q9 Q# O2 @
Inverse probability, 逆概率
- e* e: N, r) t T3 G7 B% _2 }Inverse sine transformation, 反正弦变换
0 ]$ |. R# Q+ J# ~* d& z8 H# M. KIteration, 迭代
8 y4 I' i2 J+ y. qJacobian determinant, 雅可比行列式0 g' C3 ?. b8 z! h& b+ }
Joint distribution function, 分布函数
" a" f* Z) _# @# z$ u) n IJoint probability, 联合概率% v% z% H. J3 S
Joint probability distribution, 联合概率分布5 i5 b! K/ E' U& K9 X' [$ v- O
K means method, 逐步聚类法 o$ O. G! {: n9 M; h
Kaplan-Meier, 评估事件的时间长度
6 A* v& l8 m. L* j- w7 H7 t) ~Kaplan-Merier chart, Kaplan-Merier图
" D5 L* g2 H8 l3 x Y( wKendall's rank correlation, Kendall等级相关4 c; G4 l6 \/ \6 K4 i
Kinetic, 动力学' T; z/ T* ^9 h* C
Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验6 R8 y5 Y* D4 T5 f) A2 R2 w, }3 [
Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验
, N, D$ G9 m8 y% O2 k4 eKurtosis, 峰度/ ^. x' k! Q& _/ l" ^, P3 p
Lack of fit, 失拟5 x: M6 A* S* D* d6 L; p
Ladder of powers, 幂阶梯1 m8 y+ |( W/ C
Lag, 滞后
: @ l; O- u3 y) g7 wLarge sample, 大样本
$ C, W" v4 g& Z0 e# I! {! ^Large sample test, 大样本检验
" T) v* M5 h" {) _+ l0 {9 GLatin square, 拉丁方
9 U3 c1 r+ q* I+ \8 ^# t2 xLatin square design, 拉丁方设计
1 }9 x3 ~' @% vLeakage, 泄漏
! Y6 g; A; |. @4 R) I1 J; }; `4 NLeast favorable configuration, 最不利构形) \- S: V: M+ u0 H9 I* o6 q [! Z
Least favorable distribution, 最不利分布
R: [/ T, v6 S2 V$ X/ C* |; XLeast significant difference, 最小显著差法' Y* g6 Y0 o+ X0 {3 ?# V* g, D9 \ }
Least square method, 最小二乘法1 A1 n1 h7 e. @6 t+ v5 `5 f
Least-absolute-residuals estimates, 最小绝对残差估计& ~5 Y! ^3 s: j' l, A" b7 \8 B! z
Least-absolute-residuals fit, 最小绝对残差拟合+ p( E/ M2 K `/ b: @; X5 ^4 E
Least-absolute-residuals line, 最小绝对残差线
- d, \5 M9 N0 T' iLegend, 图例0 s& t) m6 }* f$ W3 T4 b* S
L-estimator, L估计量
8 P2 z1 w; m& @4 m, c* JL-estimator of location, 位置L估计量
' ?- u9 m. Y- ML-estimator of scale, 尺度L估计量
0 g% G" r( _. K/ C* w# [3 u7 ]Level, 水平
: z: x i& U& @4 E5 d! xLife expectance, 预期期望寿命% o) O l- @7 ~4 t* `: j0 M" z
Life table, 寿命表% @/ [- y, F9 W2 u5 ~+ ]- z( T: Q7 c) L3 Y
Life table method, 生命表法- e" p7 O; k8 |0 N
Light-tailed distribution, 轻尾分布
* ?: A E, s( r4 qLikelihood function, 似然函数
5 N5 c" Y; v' ?; vLikelihood ratio, 似然比. Y+ F/ n7 C+ O
line graph, 线图
# M1 e: F5 v8 s0 ~Linear correlation, 直线相关
: l5 @+ Y# f1 yLinear equation, 线性方程* ?* d" m2 l# u* b* V* H1 k
Linear programming, 线性规划
& b; W+ N: F( D4 r+ Z+ t* e. G/ rLinear regression, 直线回归
3 n5 Y5 M) d2 e( {Linear Regression, 线性回归: D- S e7 ~9 N! T, d2 i
Linear trend, 线性趋势
9 T. n2 _: P1 t# _Loading, 载荷 4 `" g" t' b" c5 v4 E
Location and scale equivariance, 位置尺度同变性) b! ^3 c! P) Y. A% t
Location equivariance, 位置同变性3 J8 o3 m% u. X$ J
Location invariance, 位置不变性
3 i! b4 C# c; [Location scale family, 位置尺度族 E1 J* N8 {, B) y/ ]
Log rank test, 时序检验
; ^6 D6 M, K5 c, PLogarithmic curve, 对数曲线
5 I8 V# h* H* L: A/ j# rLogarithmic normal distribution, 对数正态分布2 s) X$ @- G2 r8 w$ b( S& D% F
Logarithmic scale, 对数尺度* j; K8 L5 s1 {( r3 L/ Y/ @
Logarithmic transformation, 对数变换! m8 i6 M9 ?0 s6 e" A
Logic check, 逻辑检查
: o; V* b- Q+ |9 r- s2 r) JLogistic distribution, 逻辑斯特分布
( M5 ?* `' d$ r/ S, M" L, `+ V3 Y1 ILogit transformation, Logit转换* t- o9 e! U+ u% z d
LOGLINEAR, 多维列联表通用模型
1 M6 X% M6 | C p5 P8 \! T6 fLognormal distribution, 对数正态分布- ?" O0 A. r, g; z
Lost function, 损失函数6 H6 D3 j# e4 z/ Q6 w
Low correlation, 低度相关- t2 _& b& \# U* E6 ^
Lower limit, 下限
% \- k" d) F$ i) w% I' V$ F# S' kLowest-attained variance, 最小可达方差
3 d }2 m# O0 Q @! zLSD, 最小显著差法的简称
% A d/ V4 @) h6 w3 KLurking variable, 潜在变量 ?; @- }, L3 N+ g5 i( z' |9 v# z" N
Main effect, 主效应& E3 g& ^) k$ E7 W7 \
Major heading, 主辞标目& `1 g8 ^4 {4 F% n, Y
Marginal density function, 边缘密度函数
V* I, _5 N& q( wMarginal probability, 边缘概率
1 Q% I% y/ P( _3 Y$ p JMarginal probability distribution, 边缘概率分布
1 A/ q6 B: M N4 _% \; JMatched data, 配对资料
/ ]7 ?3 j4 |6 @4 \3 d% ]3 ?8 ^& UMatched distribution, 匹配过分布0 [/ x% k5 Z# q% {& A4 x! m
Matching of distribution, 分布的匹配- @6 o" t7 L. ^/ b) \! E- P
Matching of transformation, 变换的匹配$ X3 G- X3 _( ~
Mathematical expectation, 数学期望/ L U6 o% z4 p1 z' M8 P5 C. q
Mathematical model, 数学模型, }2 i8 V. E5 o( a( E ^6 z3 M0 ^
Maximum L-estimator, 极大极小L 估计量7 z3 R; H, f1 @- [4 f. S
Maximum likelihood method, 最大似然法
4 x. B/ o$ b; Y# c$ DMean, 均数& j7 M6 E/ Z0 e5 I9 T/ a
Mean squares between groups, 组间均方
# n+ |* Y: @7 c/ V, m( fMean squares within group, 组内均方
0 i; w5 j0 b$ wMeans (Compare means), 均值-均值比较& R5 g+ ~1 ]2 A1 c
Median, 中位数
4 R! {1 e7 o6 t( J- J4 i; _ W1 {4 D( yMedian effective dose, 半数效量$ a4 J! Z) g* w* `, `8 {* I
Median lethal dose, 半数致死量
1 I: U0 g: v2 H) g7 }& F4 X( rMedian polish, 中位数平滑
4 A9 K) K# p* F0 l! A+ EMedian test, 中位数检验
& a6 s z. E: ~8 n( \# dMinimal sufficient statistic, 最小充分统计量1 T# [# B; F' u% {
Minimum distance estimation, 最小距离估计9 h; H% Q& H% f L# m8 F5 ~
Minimum effective dose, 最小有效量: X2 b0 y5 Z; }" w! x B
Minimum lethal dose, 最小致死量
2 T. m/ ^& l, J' @$ {0 {Minimum variance estimator, 最小方差估计量3 ]. y+ l: q! U* j. z
MINITAB, 统计软件包
) p2 X6 G$ ^4 d* T* p0 ?Minor heading, 宾词标目
: M. b' V. H: X7 n3 g: H% Z3 o uMissing data, 缺失值+ x) ]/ o: { N2 x# ?% ?+ }5 p
Model specification, 模型的确定
; e/ `; H0 }$ v1 T- ?. H, oModeling Statistics , 模型统计+ Z j \+ C# k* m' p5 D( C
Models for outliers, 离群值模型
! |# o/ i: ]' y4 O, MModifying the model, 模型的修正
1 |4 ^- R6 @# w0 dModulus of continuity, 连续性模+ x; P' P) g" e. t7 W5 \1 p& v2 _
Morbidity, 发病率
$ N3 Y! g9 m. e6 F1 P3 y( TMost favorable configuration, 最有利构形
_$ [2 T' d" k7 Q2 W; R) v* ]4 ~Multidimensional Scaling (ASCAL), 多维尺度/多维标度 u* h9 s0 S3 ?) t
Multinomial Logistic Regression , 多项逻辑斯蒂回归1 X) L1 d1 @1 t2 x; l0 V3 B
Multiple comparison, 多重比较
' l3 {+ }! @; z* ]0 H3 zMultiple correlation , 复相关9 y2 l6 M7 x1 B. Y
Multiple covariance, 多元协方差
# q- a# j9 R; F8 T( NMultiple linear regression, 多元线性回归
4 g1 _ d5 C; S4 Z& K! Y f. yMultiple response , 多重选项' R/ Q, f) Q4 ~6 [* l, P7 b. `2 d/ i9 a
Multiple solutions, 多解0 l+ i+ L; R/ F5 D3 f+ t/ a
Multiplication theorem, 乘法定理( }2 x: |$ h: `/ H7 P
Multiresponse, 多元响应
% Z* B, `) u, V7 M, \$ ?, a2 L7 UMulti-stage sampling, 多阶段抽样. z/ v. g0 m+ t7 M; v
Multivariate T distribution, 多元T分布3 j' @/ r) |/ g" K4 F5 j
Mutual exclusive, 互不相容
5 a: \) [( l% ]! W/ _9 GMutual independence, 互相独立
4 z( Y# o: A! a4 eNatural boundary, 自然边界
' p2 B/ y- m/ v5 tNatural dead, 自然死亡& I4 N- z) C8 c
Natural zero, 自然零
9 l+ _6 O9 F6 r! s4 d0 s5 ZNegative correlation, 负相关
9 |, O% A- o' ~: }7 X' X3 xNegative linear correlation, 负线性相关
* L1 r6 J+ b" h/ E/ KNegatively skewed, 负偏( _# g- x* K% n) z5 Z% m! j
Newman-Keuls method, q检验% Q/ F6 n8 J( f# c& k( B$ g; Z
NK method, q检验
7 P2 v' p( ^; l# `; ENo statistical significance, 无统计意义
* `0 h& N) M+ u% [4 D/ H$ {) @Nominal variable, 名义变量
8 b H' }) I( H% e: V. G1 W2 s4 f2 eNonconstancy of variability, 变异的非定常性
: z: \% t3 \" J7 V! @+ ]Nonlinear regression, 非线性相关
6 @, L6 N. V- hNonparametric statistics, 非参数统计
( i7 l9 U7 F4 JNonparametric test, 非参数检验 w! ]7 _& l* O1 ^
Nonparametric tests, 非参数检验+ |8 n$ J W) h0 i" N
Normal deviate, 正态离差& u, R+ c$ e1 [4 Q5 D) {
Normal distribution, 正态分布6 g I: |9 W& I) P3 G/ S6 L* ]
Normal equation, 正规方程组
1 P1 a( C @, `3 p+ ^" dNormal ranges, 正常范围
' ]5 ?3 I. x2 O( O7 x( _Normal value, 正常值
, z M- }# F# aNuisance parameter, 多余参数/讨厌参数
k, Y+ |1 a1 W6 s% Y9 o1 SNull hypothesis, 无效假设 ; F0 c" V# d S+ s: e" j$ J. o; ?
Numerical variable, 数值变量# [$ ]# t/ ?- X
Objective function, 目标函数
! |; S' L6 j6 I5 c& B: }. g2 SObservation unit, 观察单位7 _+ C& V; @, z! V' H
Observed value, 观察值
- e6 J/ j ^2 _4 b5 m1 IOne sided test, 单侧检验- k% F% Z% D. n4 i
One-way analysis of variance, 单因素方差分析* `' S& m8 O' d8 h
Oneway ANOVA , 单因素方差分析' D8 t# H4 p$ [
Open sequential trial, 开放型序贯设计
. f2 Q% a1 w q3 a; u3 dOptrim, 优切尾% n/ h& f* x% n0 r. }
Optrim efficiency, 优切尾效率
" ]% Q# T9 E, V) y( N2 dOrder statistics, 顺序统计量
# K3 e1 X9 w& L$ ?. ]Ordered categories, 有序分类2 @) `1 d; k: y/ O% u+ ]
Ordinal logistic regression , 序数逻辑斯蒂回归
# w5 x- Q' ^; g X# @, o) r8 ^1 jOrdinal variable, 有序变量
% E9 d. V; T0 x" ]! V' XOrthogonal basis, 正交基/ l+ d( T- q& Q% W" A
Orthogonal design, 正交试验设计
* `' @6 H/ N8 |& c' s% LOrthogonality conditions, 正交条件
- u* C2 o0 _, ?ORTHOPLAN, 正交设计
1 o& U$ E6 C; ~/ xOutlier cutoffs, 离群值截断点
* k5 j. `6 O2 ~7 A1 C0 c( oOutliers, 极端值* y# v+ S( m C' O6 v% [9 H
OVERALS , 多组变量的非线性正规相关 ; T& s6 j c. E5 m
Overshoot, 迭代过度
# S) z1 D/ O5 Z: M( Q3 oPaired design, 配对设计
: m. s+ F( V2 d8 FPaired sample, 配对样本* m; q1 f: f3 d( j$ E% i; u
Pairwise slopes, 成对斜率0 C g2 ^ `6 b. D) j
Parabola, 抛物线
6 j, L. S" P: i6 F0 X l& N7 mParallel tests, 平行试验) a3 H( v; G* H" K9 H6 Q
Parameter, 参数* X/ ~" `* {7 @, a1 ^' {) ^) g9 c/ }9 F
Parametric statistics, 参数统计
$ \8 d+ J. p( j2 f/ m: ?Parametric test, 参数检验
7 L l/ C0 w. W/ CPartial correlation, 偏相关) ~6 i: ^" `2 D; B" x
Partial regression, 偏回归
& Z) C$ h0 x0 Y; P k: GPartial sorting, 偏排序
. m0 R1 a5 Q7 Z2 x0 T: }Partials residuals, 偏残差9 l: D' R! Q* `
Pattern, 模式5 i1 B2 |2 _# E( l. n
Pearson curves, 皮尔逊曲线
+ G7 ^. n) Q; OPeeling, 退层2 L) F' H- v+ z8 Z( B
Percent bar graph, 百分条形图
* c0 U$ ^, `$ l) W' k4 {4 ?Percentage, 百分比5 Q6 H( w3 x! d- J4 N9 F
Percentile, 百分位数
+ D/ W( `* Y! oPercentile curves, 百分位曲线
* o6 b) s" L% F) L# e# D4 ]Periodicity, 周期性
- Z: L1 t/ C" T+ F/ CPermutation, 排列( T& x9 }; M5 }4 H
P-estimator, P估计量
3 @% T$ x4 z* u* o! M3 hPie graph, 饼图
1 E+ \, I @) t0 I" ^* d3 Z% F& V& xPitman estimator, 皮特曼估计量
U* u' k: {$ u; q" e. b7 S1 XPivot, 枢轴量- Z$ j; ]" N/ _) a' |% m- D
Planar, 平坦
3 v0 m, g5 {2 W2 ~1 oPlanar assumption, 平面的假设$ M' }; V' F$ K# A( O/ J. B
PLANCARDS, 生成试验的计划卡5 ?' x( B- i- n, d7 e
Point estimation, 点估计, w2 S0 S3 a9 _$ e& U& e
Poisson distribution, 泊松分布
& Y& I0 ~) F. z6 Z8 c% F/ I+ f$ dPolishing, 平滑& ]' P+ M$ x, O8 y0 X, n4 [
Polled standard deviation, 合并标准差
; v- i6 H! |' R$ f9 iPolled variance, 合并方差
3 J7 {4 `$ J' u$ BPolygon, 多边图
8 i' d4 ?5 W/ y9 e" wPolynomial, 多项式
; p% X1 e1 e3 F( o7 z! ?. W8 qPolynomial curve, 多项式曲线* S f* d# y8 Z- f6 I
Population, 总体
2 ~7 A8 j/ Q, zPopulation attributable risk, 人群归因危险度) t% O& G% Q$ Q8 S" |
Positive correlation, 正相关
@; W) h( D% F6 q4 O8 b( wPositively skewed, 正偏1 t; W6 O, h6 |9 q, ?% U
Posterior distribution, 后验分布
+ g6 Z4 R$ N( x9 _/ ~Power of a test, 检验效能& l2 x. M6 s( N0 v0 c, [* \
Precision, 精密度
6 T% F- Q# w0 i2 D! o7 HPredicted value, 预测值
; d# O- C7 @, f2 nPreliminary analysis, 预备性分析4 o3 a% f6 C7 `# }
Principal component analysis, 主成分分析, W! r, _8 ^$ \, ~7 _7 l7 h* R) |
Prior distribution, 先验分布5 B6 ]" z: U; t+ D4 T c+ u
Prior probability, 先验概率
% i( h/ `" ]- m) u3 V* rProbabilistic model, 概率模型
- Z, U0 d2 X4 s( J" cprobability, 概率
5 N& e3 Z8 a$ Z6 L: d7 UProbability density, 概率密度! l3 P9 Z* k/ ~1 h
Product moment, 乘积矩/协方差
: f3 f, `* P3 w# I0 `Profile trace, 截面迹图
* Z6 j3 F4 L2 p- Q; V: E; j TProportion, 比/构成比8 U+ z7 K- s) a
Proportion allocation in stratified random sampling, 按比例分层随机抽样
" Y& O. s& B" T. V8 X* Q5 }Proportionate, 成比例" N, I$ n1 K. X2 I2 M
Proportionate sub-class numbers, 成比例次级组含量
! @' n3 m2 w( ?/ B5 EProspective study, 前瞻性调查8 Z, z3 k) l& w/ o% a, t; H# h
Proximities, 亲近性
# w: V9 d4 A1 w2 ?" W9 F: N" KPseudo F test, 近似F检验, r3 k* n: N, u2 l& m
Pseudo model, 近似模型' q: H1 e6 N" _+ i9 ]
Pseudosigma, 伪标准差
6 u6 }! d }; q2 [( \' ?Purposive sampling, 有目的抽样
8 D' Q9 X. U1 i' J3 WQR decomposition, QR分解
% z: q$ D0 W. ^2 |Quadratic approximation, 二次近似
4 T% u" Y0 O: h, W# \) U0 gQualitative classification, 属性分类2 }7 t; H1 u5 s4 A0 ?7 ? e
Qualitative method, 定性方法/ G# W5 y* ~7 L; p8 G
Quantile-quantile plot, 分位数-分位数图/Q-Q图) K, k- }' }; n& v* c
Quantitative analysis, 定量分析1 W& ~5 L1 U6 a+ s
Quartile, 四分位数
' @( O' Q3 x: UQuick Cluster, 快速聚类
. K0 E/ S6 i/ k. ARadix sort, 基数排序* h' E3 [" U2 o# v q5 `4 u; E
Random allocation, 随机化分组' P0 G b- _3 q9 N/ F2 x9 w+ I
Random blocks design, 随机区组设计
, d: H- g% z2 uRandom event, 随机事件$ o9 j3 L/ M% e/ ?6 K
Randomization, 随机化
- `# ]( \3 Q* }8 r! D/ wRange, 极差/全距
, s1 _' \6 C2 h, k$ S3 E3 G' V9 hRank correlation, 等级相关) g5 ]+ e% F6 h% r
Rank sum test, 秩和检验0 ^2 o- t- b, S/ |& ?
Rank test, 秩检验' t" R: a$ P* z; H2 A
Ranked data, 等级资料: B# ]) ~* L: e: L
Rate, 比率
l# z, B2 @/ z$ [7 k9 v2 ORatio, 比例
- i; ^: P. G+ h" _ r# o' o( ^, K2 q6 URaw data, 原始资料: n" X8 n( Y6 I- q" h9 s
Raw residual, 原始残差
7 N$ X5 v& {7 r# m- sRayleigh's test, 雷氏检验/ K- h$ z6 O5 ~( D% i+ ~- F
Rayleigh's Z, 雷氏Z值 . _/ Q/ {2 L: R3 F
Reciprocal, 倒数
- N) u' R6 c2 r& NReciprocal transformation, 倒数变换
5 D' z- j1 P" [5 ]) oRecording, 记录
; b8 o% U& y* h% w; b, B- mRedescending estimators, 回降估计量
' P) Y2 E7 Y* [" l. `$ ~; FReducing dimensions, 降维
" v _. K, L! h* ^ K, f/ u, eRe-expression, 重新表达
7 X2 y& j8 k8 t) P6 uReference set, 标准组7 U* y# X0 r4 U3 W
Region of acceptance, 接受域5 v# H4 t: _! _; A
Regression coefficient, 回归系数
. p, {% N2 d5 F7 X5 |4 dRegression sum of square, 回归平方和
+ m5 _0 S. k. |) G ~% m$ g, ERejection point, 拒绝点
b3 m; t' P6 F6 cRelative dispersion, 相对离散度1 R: F! U g7 H! @: R K: i8 W1 k
Relative number, 相对数
; [/ v* c) K6 U) H9 Y" wReliability, 可靠性
$ U' l. w, k/ XReparametrization, 重新设置参数3 j7 z4 `, y& z; S+ A
Replication, 重复
( P b9 V. N3 n1 U1 kReport Summaries, 报告摘要
4 E7 ^: w- u/ c2 o" q. |$ d: M1 p( `$ [Residual sum of square, 剩余平方和
! t" c) m1 {* f4 t* u5 m' O. [$ vResistance, 耐抗性
' X+ {4 u- y! U4 oResistant line, 耐抗线
' x w& Z( U) q EResistant technique, 耐抗技术
( P6 \, S' U3 gR-estimator of location, 位置R估计量" [8 l) j3 E4 g' u f% h
R-estimator of scale, 尺度R估计量
2 R- `% H3 X6 y6 y" m0 uRetrospective study, 回顾性调查$ c8 F% ?! H" R1 u' O/ w9 h
Ridge trace, 岭迹
# [- _7 U% ^5 m' G* F! WRidit analysis, Ridit分析
+ S3 }2 T( B8 M0 ~8 q5 X! d- iRotation, 旋转
R! W# U8 \1 s0 M! B0 h) j! [Rounding, 舍入
2 O+ u/ e5 c# k' o+ U7 s4 KRow, 行
- q. \. H" N2 J9 C- XRow effects, 行效应. u4 _ o, h; V% m7 K) w. [
Row factor, 行因素7 r8 S6 P: z/ C( E. R8 T; w
RXC table, RXC表
3 w) s" J3 S8 H. v7 ASample, 样本 D9 N6 Y! m) @
Sample regression coefficient, 样本回归系数
8 v ~* S2 l- ESample size, 样本量
2 o: a; }! r3 \ kSample standard deviation, 样本标准差
; D ^& b Q/ B- E# U! zSampling error, 抽样误差. \$ X$ k$ Q9 s! u' p
SAS(Statistical analysis system ), SAS统计软件包 d3 K/ }+ H" K, b8 H; i9 \
Scale, 尺度/量表& F4 M- J# c5 q2 B: w# M b
Scatter diagram, 散点图
% n! v3 |* F/ ^( {9 A9 ySchematic plot, 示意图/简图
: B, w* k' ^& |; U! _ I0 nScore test, 计分检验4 @4 r; C2 o2 R: y4 [0 f
Screening, 筛检
0 z, ]/ I! X* F; v, P* j( ~# m. x" KSEASON, 季节分析
- L$ ~- H' e: R6 r. u0 g) b6 ?Second derivative, 二阶导数0 f! v8 O: r; M
Second principal component, 第二主成分6 f3 x, f6 O( L" T
SEM (Structural equation modeling), 结构化方程模型 1 @7 x) {. W8 a+ U& G- Y
Semi-logarithmic graph, 半对数图+ n/ J5 z' w& D, p. y8 M) y
Semi-logarithmic paper, 半对数格纸5 Y/ m8 C' p1 o0 {5 R
Sensitivity curve, 敏感度曲线
2 E0 I2 N1 |" y4 V3 i+ USequential analysis, 贯序分析: o' z! d/ ?5 S
Sequential data set, 顺序数据集
) U' x* v3 o( [0 cSequential design, 贯序设计
Y! [ `* P) j' V$ |6 O1 {Sequential method, 贯序法
- w8 S* t+ |) l. s3 g7 x) I; ~" V$ aSequential test, 贯序检验法 H6 Z( _/ i9 o3 D. T
Serial tests, 系列试验
2 V0 T3 d5 U+ \Short-cut method, 简捷法
5 _. @- M9 t- e$ GSigmoid curve, S形曲线
: U0 Y6 C& }8 a, e: f) [) SSign function, 正负号函数
) _3 E9 S/ M6 l* QSign test, 符号检验
$ a( k$ D! x5 {' S' C$ U4 VSigned rank, 符号秩" U; t* O0 s8 g% T3 U* B5 ?
Significance test, 显著性检验
1 r6 [8 r; w' g' w/ P, e R9 KSignificant figure, 有效数字
! x3 j+ J6 |9 }& ^ eSimple cluster sampling, 简单整群抽样+ Q* ]+ z$ o: ^6 y0 W' b. V
Simple correlation, 简单相关
* s) g& d4 t+ q( ?Simple random sampling, 简单随机抽样
# X& n: l" f5 t! M6 vSimple regression, 简单回归
8 ^% f! o) n* f) r6 R8 psimple table, 简单表 Z* F4 I+ A& I! U( P
Sine estimator, 正弦估计量
% s0 e$ p, I: k; G0 GSingle-valued estimate, 单值估计8 \: p- U r9 L6 K! N2 z9 N
Singular matrix, 奇异矩阵7 x5 M; s3 \% k$ N! L r
Skewed distribution, 偏斜分布
% m! _9 X0 t$ d, E: \8 c" r2 ?Skewness, 偏度
; Y$ q; ]& w; P7 G4 L2 b( X' j ~Slash distribution, 斜线分布
4 Q( z- |( i4 i" OSlope, 斜率
) z' m q$ v" r% [' GSmirnov test, 斯米尔诺夫检验
6 ?- L a4 r' w* L; [3 m& USource of variation, 变异来源& s3 B2 q7 d( R# _
Spearman rank correlation, 斯皮尔曼等级相关) k9 X4 Q& ?& k! _/ ]! x' o
Specific factor, 特殊因子
2 _2 { p9 b$ aSpecific factor variance, 特殊因子方差
0 m" \9 s9 @: tSpectra , 频谱6 Q1 f+ p/ \# m
Spherical distribution, 球型正态分布4 M& c b1 C- P3 G' m4 c3 A
Spread, 展布7 m0 r" W w& i, m. `7 [5 j
SPSS(Statistical package for the social science), SPSS统计软件包
' F9 q- }* V: a" ~+ N9 [5 C% s! FSpurious correlation, 假性相关
" J, O" T0 ]3 m" @* LSquare root transformation, 平方根变换
0 m; @6 U4 z7 U2 a- |+ MStabilizing variance, 稳定方差
: G3 o3 r, Z7 [/ {7 w! O3 RStandard deviation, 标准差9 y' Q# K; l M$ B
Standard error, 标准误& {4 e4 |* V+ ~( I/ Y7 j
Standard error of difference, 差别的标准误
. y5 N) \( {! @" aStandard error of estimate, 标准估计误差$ M( Z( M6 {9 W0 Y5 U% b6 ~1 b+ i
Standard error of rate, 率的标准误
9 t) A- Z# w, u) n9 w: JStandard normal distribution, 标准正态分布
+ V, H1 ^5 \: A0 g! \Standardization, 标准化
' _/ r4 @$ Z! v. wStarting value, 起始值
6 J: T& o0 e$ n7 {4 e0 x( ]" UStatistic, 统计量
6 Y: u+ ]& p, {/ C/ N$ V, iStatistical control, 统计控制
0 Y2 ]' R! p" mStatistical graph, 统计图
+ g; a! J5 z& E+ i2 Q6 b) K& SStatistical inference, 统计推断
% c$ I z; s+ r' nStatistical table, 统计表
) ^: A7 b3 O6 v t9 R' fSteepest descent, 最速下降法* J7 m) ^% J/ |- M. N; b/ o& f
Stem and leaf display, 茎叶图
" Q; v3 b5 M f; o# q) xStep factor, 步长因子! C$ m; J5 X3 M# N$ s% n. @
Stepwise regression, 逐步回归# N7 j# ^# M: a& R5 w
Storage, 存
0 _( S$ E, d6 b/ a/ TStrata, 层(复数)
0 ?4 l2 C5 v+ JStratified sampling, 分层抽样
& I8 C( z7 Z% d8 I- qStratified sampling, 分层抽样' o6 c8 ~$ x$ x
Strength, 强度0 T$ {& K8 d# H3 E; s
Stringency, 严密性
8 {# {! e% K' Z% o4 U8 {Structural relationship, 结构关系
8 I# B3 ~/ \( e+ d, }+ ^- J6 o# AStudentized residual, 学生化残差/t化残差1 w( ?3 X, n) @
Sub-class numbers, 次级组含量9 S0 j- V- Y! n
Subdividing, 分割8 n% z3 q _& D/ d. L
Sufficient statistic, 充分统计量
8 Y/ y" f& R2 j0 |Sum of products, 积和! `( ]; Z) g0 p
Sum of squares, 离差平方和
8 P* Q0 a9 ~' R0 ^. c3 ASum of squares about regression, 回归平方和8 t7 z: R( b5 ]9 _) x4 \" T3 @- }
Sum of squares between groups, 组间平方和 |! A! g' R+ \ N
Sum of squares of partial regression, 偏回归平方和5 | \$ b# W) @, m
Sure event, 必然事件( V2 Q8 k' ]7 G3 {9 j: S$ \
Survey, 调查# l, L1 H4 W1 v
Survival, 生存分析# F& W7 F4 m* x% b3 f
Survival rate, 生存率
' W" B0 ^9 {+ V2 oSuspended root gram, 悬吊根图
6 ^7 V; @- f0 w9 f& ^# j. sSymmetry, 对称
% A; j* x8 }( ~# j" H+ F9 P* oSystematic error, 系统误差- {8 {: I/ p1 m6 T6 X* |
Systematic sampling, 系统抽样4 P4 ^1 `) j+ T$ _4 O
Tags, 标签 X% P5 ?. {9 Z$ ]
Tail area, 尾部面积
6 z+ I ?; [5 Z) vTail length, 尾长
9 b/ O/ f/ {& r: T* nTail weight, 尾重7 N0 k, m7 k1 J- B( H! I2 L0 }0 M: Y
Tangent line, 切线9 S, z8 S1 ?* h- u0 K; ]" [
Target distribution, 目标分布/ C# H: D1 C2 T
Taylor series, 泰勒级数# K( q- s4 z: E, q6 w$ l! b
Tendency of dispersion, 离散趋势8 i5 c8 V$ v7 C# \+ k
Testing of hypotheses, 假设检验3 V. @$ F7 {8 W/ p- ?0 g- C2 u4 N/ D
Theoretical frequency, 理论频数
: Q; i2 ?; B( `Time series, 时间序列" Y; L0 {6 S- ~8 U; |* Z
Tolerance interval, 容忍区间" {8 I: Y% s7 N" A7 v9 O1 x
Tolerance lower limit, 容忍下限- H& O4 n- a' F9 O. J" ^1 [4 M
Tolerance upper limit, 容忍上限 Q% { P" y; f" }
Torsion, 扰率
8 B r8 K" x. i6 R. ~- V8 xTotal sum of square, 总平方和% e7 e, J, y$ i- i; t
Total variation, 总变异; z0 l* n, K4 b
Transformation, 转换
( |4 b$ V- }: @2 ]2 i8 CTreatment, 处理8 d5 q: c. i, h
Trend, 趋势" s& ^% {( A) ~+ P
Trend of percentage, 百分比趋势
" `9 Y: ] i( k o9 JTrial, 试验
4 I! V6 U: O8 h3 O0 y2 pTrial and error method, 试错法
" A- x" E H6 N3 R8 KTuning constant, 细调常数
; s( Z3 I% D% O3 uTwo sided test, 双向检验! h# d( ~" O6 G2 x
Two-stage least squares, 二阶最小平方2 s- `9 V' f2 m% F& V$ y
Two-stage sampling, 二阶段抽样
' z, L: V' C: m8 E% iTwo-tailed test, 双侧检验
& A( W/ \* F% J4 U4 tTwo-way analysis of variance, 双因素方差分析5 g5 F* m. A2 _& y$ _2 M/ B
Two-way table, 双向表
/ L4 E( |/ c9 HType I error, 一类错误/α错误2 F' U" m2 o6 n) E
Type II error, 二类错误/β错误
2 u( V3 s1 B& I1 DUMVU, 方差一致最小无偏估计简称, U6 W3 H- \/ Y
Unbiased estimate, 无偏估计
# N9 p1 @5 Y; Z" T, q/ F# IUnconstrained nonlinear regression , 无约束非线性回归
0 h# q2 i ]$ M& U! o; k3 nUnequal subclass number, 不等次级组含量) N" w+ o6 {3 |6 H: Y j7 A
Ungrouped data, 不分组资料
& }* S) U5 U7 {* {4 @. A7 \+ FUniform coordinate, 均匀坐标 N8 Q1 h- n7 V6 z' ^
Uniform distribution, 均匀分布" q, W$ z1 {1 }' u0 W) |
Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计
/ h4 H l/ v* p0 tUnit, 单元
$ W+ J6 g) J, C* RUnordered categories, 无序分类* G; i8 z8 l$ ?- r: V
Upper limit, 上限 Q. s2 r- F# Z J
Upward rank, 升秩; ]+ n7 M+ \( r1 ?
Vague concept, 模糊概念0 O0 E+ k% R+ N0 _& j8 W6 r! q
Validity, 有效性3 B' q9 L) A! j
VARCOMP (Variance component estimation), 方差元素估计
$ @8 M7 T4 {. W: n4 B8 p; SVariability, 变异性" x6 O1 i, @3 U0 Y1 j4 g
Variable, 变量
1 x! g# @2 Q+ j4 d$ V1 ^% i% JVariance, 方差
) u, D R. K# d7 wVariation, 变异
2 n1 l+ J& X- F0 C+ xVarimax orthogonal rotation, 方差最大正交旋转3 ~# {8 g! d8 ~: {) d
Volume of distribution, 容积
- \* H) y. O+ o, oW test, W检验
. w' [! \6 v0 u( F9 IWeibull distribution, 威布尔分布5 K/ O$ K" S$ U
Weight, 权数
) Q4 m; Y8 t, `* rWeighted Chi-square test, 加权卡方检验/Cochran检验' |- V0 L5 o! J# o2 [3 p" f
Weighted linear regression method, 加权直线回归
- @ \7 U3 B7 u' d; ~7 a; v( D' [Weighted mean, 加权平均数2 [3 i$ g2 x5 ~1 O4 M8 \- Y
Weighted mean square, 加权平均方差
7 d$ g* L2 Q- `9 R% ?# L1 z/ TWeighted sum of square, 加权平方和; ]& N) w0 _7 L& G- N5 ` |
Weighting coefficient, 权重系数3 m; \( g6 g+ K
Weighting method, 加权法 4 i2 W! x1 [0 B3 C2 {5 ?
W-estimation, W估计量" M% r5 W5 y& U. T/ u5 L4 J9 N
W-estimation of location, 位置W估计量7 @8 _# O* V! @7 y; @
Width, 宽度
5 K( l; g0 M; P7 ^Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验
7 Q2 \8 Q' o# |% Y% Z s {Wild point, 野点/狂点
$ e5 t9 G; O+ k/ c2 p! `9 MWild value, 野值/狂值) |+ k U3 \( S$ g
Winsorized mean, 缩尾均值: h, ?% K: m; Q8 B; F+ c" `
Withdraw, 失访 4 S( j6 G1 }; q+ y
Youden's index, 尤登指数
# `6 B* k$ W. lZ test, Z检验/ i+ H5 S3 z4 a- a7 q5 h
Zero correlation, 零相关
+ D+ A. K+ q9 Z* @6 i% CZ-transformation, Z变换 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?注册会员
x
|