|
|
Absolute deviation, 绝对离差
" g5 L" O3 a/ T$ U6 UAbsolute number, 绝对数
1 E$ n5 v4 K: ]7 ~6 qAbsolute residuals, 绝对残差! c5 Y; |( y U8 J- K) K
Acceleration array, 加速度立体阵2 [1 D# m. z0 z' M" n9 Q
Acceleration in an arbitrary direction, 任意方向上的加速度
) w; P1 W8 h5 b8 P6 rAcceleration normal, 法向加速度) j9 O( ?6 M5 R
Acceleration space dimension, 加速度空间的维数
2 W4 K: K% }& p. |( `Acceleration tangential, 切向加速度4 T" S# p9 h& I$ `5 n
Acceleration vector, 加速度向量8 r: D) j7 J- e2 d# j
Acceptable hypothesis, 可接受假设& a8 H! r) s- H8 W. M& p3 R# s$ B
Accumulation, 累积
, Y' F0 H/ f# [Accuracy, 准确度
! B/ z" G' i6 S& YActual frequency, 实际频数0 a% ?1 N* f B) A
Adaptive estimator, 自适应估计量
9 c) f I6 y) S1 d8 e5 S3 y& Z/ ?Addition, 相加
/ i, S; m8 h$ v/ `! ~7 y0 {Addition theorem, 加法定理5 [# U; O/ m* G
Additivity, 可加性. }" |5 f/ a3 ^) f- x4 g
Adjusted rate, 调整率
9 x* v' a2 q' y$ o* L; Z) O9 O: C2 DAdjusted value, 校正值' b4 ^( o u# r, D
Admissible error, 容许误差- t* Z h4 ^0 @/ q6 t- S2 r
Aggregation, 聚集性
- w# H: \* h2 r8 k! X. P. g6 AAlternative hypothesis, 备择假设
2 U; d3 p' s+ g/ I, g( V. m' SAmong groups, 组间: B& ^' A; r3 o/ z0 t
Amounts, 总量. a4 O; H2 i6 A) w# s, Q
Analysis of correlation, 相关分析
: R! n& m- P& XAnalysis of covariance, 协方差分析' S* y. b9 |) q5 A( U
Analysis of regression, 回归分析
: V' {3 }$ ?: N* m: y! WAnalysis of time series, 时间序列分析' R) C4 o; n: @# P! j* K2 e
Analysis of variance, 方差分析, i0 P. E9 j Z; o
Angular transformation, 角转换. V( s. e; U M# ] n3 `, i( ]! `
ANOVA (analysis of variance), 方差分析4 [7 n, o) j8 N( X
ANOVA Models, 方差分析模型7 Z1 Q6 K, O9 \, D
Arcing, 弧/弧旋
; i" h6 Z1 X7 UArcsine transformation, 反正弦变换
, C$ e7 A6 b( d3 Q8 S& s! e" \Area under the curve, 曲线面积5 x' a0 k6 {: g3 R
AREG , 评估从一个时间点到下一个时间点回归相关时的误差
: y2 |# ?5 _7 p8 v( gARIMA, 季节和非季节性单变量模型的极大似然估计
e7 P# c4 U2 y3 d1 y, NArithmetic grid paper, 算术格纸
/ T1 X, U% M$ n7 C5 FArithmetic mean, 算术平均数
0 D1 s9 s5 \9 w: S7 D- e T1 u; ~! PArrhenius relation, 艾恩尼斯关系
' y, |: \5 \/ {3 C% q: z4 c& iAssessing fit, 拟合的评估: w p( c. o2 h( a1 q8 E) N: C' b
Associative laws, 结合律
) o/ I6 ]4 l7 m9 \( \/ ]' }Asymmetric distribution, 非对称分布
/ ?! c8 r4 z/ f/ Q1 Z- \- C: [Asymptotic bias, 渐近偏倚3 h8 z6 x# b) b* ]1 m" e4 J
Asymptotic efficiency, 渐近效率
( w$ v' }) ], R) o+ n' {4 S' b3 HAsymptotic variance, 渐近方差; e; l$ r; d0 n
Attributable risk, 归因危险度# v- T9 g. s) \% ?: x; K
Attribute data, 属性资料( R, e+ u j7 @( ?: |. c
Attribution, 属性! P) W9 v% _$ E& Q9 W( L& q
Autocorrelation, 自相关9 F! B, V8 `- d. @
Autocorrelation of residuals, 残差的自相关: F4 T3 F" n+ x3 Z
Average, 平均数
4 L. O3 s. P) K6 ?' M9 n* A# BAverage confidence interval length, 平均置信区间长度% E' }* F% \5 W' v, l) t" w
Average growth rate, 平均增长率
Q* v! N! I* V* GBar chart, 条形图
) d g. o# e' w4 }Bar graph, 条形图9 u' ?; w; r! w& M
Base period, 基期
$ p6 r) Q R5 q+ wBayes' theorem , Bayes定理
! L' W0 D! B9 @% C, ~Bell-shaped curve, 钟形曲线% I) X2 h* O! E( Q4 v3 ^
Bernoulli distribution, 伯努力分布6 a6 B) V* @; X3 u7 C2 {
Best-trim estimator, 最好切尾估计量
+ Q. o" d3 A v" f7 l; N& j: sBias, 偏性# u2 B4 j" r" N' r
Binary logistic regression, 二元逻辑斯蒂回归
: x& x% |+ Y- C9 ?1 O1 y' oBinomial distribution, 二项分布
; E3 b; R0 ~/ G, p pBisquare, 双平方1 A! I7 I. _. H: d/ m7 z+ ^; f* x
Bivariate Correlate, 二变量相关7 }- f- i$ f1 b a4 s8 {1 t
Bivariate normal distribution, 双变量正态分布
! `1 I: k; c y4 G+ z8 aBivariate normal population, 双变量正态总体" K, g% K) e6 P ?
Biweight interval, 双权区间8 @9 O. d# {+ q
Biweight M-estimator, 双权M估计量( V. i' {) W) `+ |
Block, 区组/配伍组
# F2 Q3 B' O. |: ?6 K- c# eBMDP(Biomedical computer programs), BMDP统计软件包% E4 Z2 B! P; b$ g* ?7 b' o. o
Boxplots, 箱线图/箱尾图" M3 ], C: S6 s' X; U/ b* v# k
Breakdown bound, 崩溃界/崩溃点
1 X( t9 U# z5 H2 m& sCanonical correlation, 典型相关. `+ b% J. o; g3 |
Caption, 纵标目3 K6 K$ B0 z7 b P
Case-control study, 病例对照研究
* a9 @7 d j. O- T+ Y- X+ nCategorical variable, 分类变量
! S6 z6 ], l9 S ICatenary, 悬链线
4 w" t+ R v9 R+ b4 F( ~ xCauchy distribution, 柯西分布
4 C$ T2 i+ A# V0 R; \Cause-and-effect relationship, 因果关系5 T& V- u. G- d4 J i+ _! D
Cell, 单元
4 N: {+ O0 Q$ b0 [- j- K& V2 XCensoring, 终检1 K4 m' x! V% b* n
Center of symmetry, 对称中心4 J7 h( X( b% U& o- v9 i9 z& X
Centering and scaling, 中心化和定标. g$ b4 q8 d4 R+ Y; ?; o8 _+ p
Central tendency, 集中趋势
& r; j# h. c# ~) Q, f+ ACentral value, 中心值+ a+ D" c8 c7 R5 J5 U1 U& x! r e
CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测
: ~1 K- L; D6 PChance, 机遇
3 n3 B2 Z: L; dChance error, 随机误差
! F K, O( O" v$ M3 o$ b& ? v" WChance variable, 随机变量
( t; S, M \8 t* G9 ?/ UCharacteristic equation, 特征方程: @1 O* n2 l; i. p ~/ L
Characteristic root, 特征根6 m! U9 m/ Y8 B3 Q/ v: ]
Characteristic vector, 特征向量 P4 d: H0 W8 U2 T/ N
Chebshev criterion of fit, 拟合的切比雪夫准则
( l+ Z( [& t% ?6 VChernoff faces, 切尔诺夫脸谱图6 f+ s, Q* t# C0 h$ T
Chi-square test, 卡方检验/χ2检验0 r+ t0 v2 d% X; R
Choleskey decomposition, 乔洛斯基分解
* s) ]+ V* a, Q$ y# O, N4 N6 }Circle chart, 圆图
0 k" h6 o }2 ]: o4 O* N" YClass interval, 组距
+ F% R9 X. H- V0 c; |- j% X4 F0 |Class mid-value, 组中值
' q# S+ R9 e- x( ~Class upper limit, 组上限# l5 P& \. J& [0 A5 U: s
Classified variable, 分类变量
3 ^+ _8 k+ c( W$ B# p1 h1 bCluster analysis, 聚类分析/ L9 F/ v5 s5 n: Z' V
Cluster sampling, 整群抽样
# _ P d/ T4 ~; uCode, 代码9 l4 E' }% q a5 \: J k' p$ S
Coded data, 编码数据( A. m( A4 m! n2 J E) |
Coding, 编码% E% a) g( f0 f) f) U7 {
Coefficient of contingency, 列联系数+ O9 K M' t+ a" j; Y4 J
Coefficient of determination, 决定系数
" d5 m% E" k9 s- l3 d; |: A7 OCoefficient of multiple correlation, 多重相关系数: \( ~! U, M" j, f
Coefficient of partial correlation, 偏相关系数3 t5 E# @6 A; w/ \- P: ~
Coefficient of production-moment correlation, 积差相关系数4 N$ h. n7 n' E3 T$ A4 v
Coefficient of rank correlation, 等级相关系数4 _: a. W% M% M- `& V0 z* M1 d
Coefficient of regression, 回归系数
% ]. s9 b5 l, M7 `9 p. RCoefficient of skewness, 偏度系数: _( b- l) K: {
Coefficient of variation, 变异系数
1 n! O( X% T" DCohort study, 队列研究
+ K# s0 V/ f" D: P* I8 NColumn, 列
' s+ e* v# E" k, c3 q' VColumn effect, 列效应
. p0 H. U6 ^, M' x+ GColumn factor, 列因素
4 M" k" j V9 a6 f# W8 ?2 @- D5 g ]4 qCombination pool, 合并2 C f' d+ [+ ?. b' K( X& t3 @
Combinative table, 组合表
+ h" S; K- u- V6 r1 Q. ~# ~Common factor, 共性因子
; M+ _* o2 {0 wCommon regression coefficient, 公共回归系数' J4 h: w1 b' u8 g- c
Common value, 共同值
( v) D! |- |. pCommon variance, 公共方差& t3 p( d3 R9 J& B. o
Common variation, 公共变异0 B* s3 W% l3 p( B$ B3 J' s
Communality variance, 共性方差' @/ T- w# w5 y3 i7 u
Comparability, 可比性
" B) I, H- c' j. eComparison of bathes, 批比较
9 _ q& v- O. lComparison value, 比较值
# D# w9 v7 O5 t8 JCompartment model, 分部模型' U: f* G; X2 n5 @* a$ m5 h) X
Compassion, 伸缩
8 y4 a( E+ M8 h& o4 W% V; zComplement of an event, 补事件" z7 @& \& y9 T* D% ?) a5 Z
Complete association, 完全正相关2 ?6 U% W' x1 e$ N1 Y$ a5 \
Complete dissociation, 完全不相关
2 L% C" m6 A6 Z' vComplete statistics, 完备统计量/ U1 T# Q7 t3 w% p% g
Completely randomized design, 完全随机化设计
: }8 k6 h- m6 K) NComposite event, 联合事件
, k) @5 t9 t! S. zComposite events, 复合事件
- A) v1 q( Y6 l& QConcavity, 凹性: ~- {1 z$ J; ~- U$ f
Conditional expectation, 条件期望
: @" T c* ?9 }% s; yConditional likelihood, 条件似然0 J# @5 A- w& W" Y) t3 _
Conditional probability, 条件概率
* k: \3 c5 F; |: F& m5 tConditionally linear, 依条件线性
. J! g9 T W0 O& s3 a& e, uConfidence interval, 置信区间
# ^. Y$ P9 l6 I, MConfidence limit, 置信限- B! i3 n5 @8 R# ?. E$ [, u
Confidence lower limit, 置信下限
+ @: I3 H G- j3 J; [- JConfidence upper limit, 置信上限5 _; y7 P- @# u, W' A6 w
Confirmatory Factor Analysis , 验证性因子分析
2 t. K2 G, ]3 W$ i% p4 EConfirmatory research, 证实性实验研究
& ~2 \; ^ s$ |2 U5 Z" T8 z4 [Confounding factor, 混杂因素
% t" d/ q. |! WConjoint, 联合分析9 w X% z4 f) r
Consistency, 相合性
& V/ C" {+ P3 r0 mConsistency check, 一致性检验: D4 D0 m# s; w
Consistent asymptotically normal estimate, 相合渐近正态估计
" h7 c- m# z: U) GConsistent estimate, 相合估计5 I% F* Y q( t/ `) `
Constrained nonlinear regression, 受约束非线性回归
8 G0 t( W$ C1 PConstraint, 约束
. R* _7 S% h# T: F# F" {+ {Contaminated distribution, 污染分布
9 {0 `* ^' V$ E f, TContaminated Gausssian, 污染高斯分布
$ u# w/ q, f6 b/ N8 xContaminated normal distribution, 污染正态分布9 f& B0 t& r) e- E
Contamination, 污染 W% ^* }4 r( ~3 ]& r5 P2 k/ l
Contamination model, 污染模型
$ J& Q5 Y7 V* R& pContingency table, 列联表' X. _# _8 q, |0 X* p4 N
Contour, 边界线
+ o; x& g7 l" [7 t1 ^Contribution rate, 贡献率: a' ^3 Z, w: t u1 S( M% ^
Control, 对照; D3 ^( J$ ^+ [
Controlled experiments, 对照实验 M2 I4 w% V* C C3 y" I
Conventional depth, 常规深度
0 s, M1 n+ j# Y8 b- k9 MConvolution, 卷积
. C6 l, ^7 h( v/ D) Z" ECorrected factor, 校正因子# A/ T0 Z: z w- @
Corrected mean, 校正均值7 l {2 j+ ` n; _. t
Correction coefficient, 校正系数
9 Z, V B1 x- ZCorrectness, 正确性
0 v$ u- Q: N) Y2 V( K- I& }4 hCorrelation coefficient, 相关系数" y& `8 z1 L% | p$ `1 ?
Correlation index, 相关指数
" T, c3 O+ t8 bCorrespondence, 对应0 c# j1 \ l, ], o# v
Counting, 计数' D+ M; n( ]3 ]: L& O
Counts, 计数/频数
8 R( n; j* m8 l- zCovariance, 协方差+ I, j# ]# K/ X2 G3 J6 o
Covariant, 共变 9 _* e. E5 X0 ]+ l T! @
Cox Regression, Cox回归
& o: P3 @. l! V0 b( [: UCriteria for fitting, 拟合准则
1 h3 X7 S# t' r( ~( L' ~Criteria of least squares, 最小二乘准则; q! X8 N/ y1 u9 I
Critical ratio, 临界比* O0 O4 w7 h" j2 H
Critical region, 拒绝域1 c' g9 x9 S9 C6 T& ~- q8 B
Critical value, 临界值! g/ z( q) [1 t, p- g
Cross-over design, 交叉设计
1 }1 N7 p) r |- ]; mCross-section analysis, 横断面分析9 s% j% y+ N% @, ?# R
Cross-section survey, 横断面调查
( ?# B/ x7 C, j/ L5 X1 e0 bCrosstabs , 交叉表 , e. G# p$ z6 @2 ~6 |' h
Cross-tabulation table, 复合表8 T2 g/ Q2 K2 I3 N+ c# z
Cube root, 立方根
/ P$ K( e9 d6 x* C* z& HCumulative distribution function, 分布函数; E# j% {' i4 t+ s
Cumulative probability, 累计概率
; e. |; o& y) e' I& BCurvature, 曲率/弯曲
$ Y- Z3 z% I" D7 K1 ?) o) gCurvature, 曲率: ?, d+ E- I5 c U- T# m8 O
Curve fit , 曲线拟和
v- Y& {. O8 |4 sCurve fitting, 曲线拟合
& I/ e5 ]+ t9 I; o. x3 c3 |- O8 r3 SCurvilinear regression, 曲线回归8 x9 [# r( b! |" a
Curvilinear relation, 曲线关系2 q. s3 Q0 s! U0 B x# P! q
Cut-and-try method, 尝试法; a; }8 N! x4 _* W+ G) g- J6 C
Cycle, 周期
4 n% z0 K" q8 V: C0 [0 Z; W2 OCyclist, 周期性! e, o; L+ |% J& B- `+ v
D test, D检验- O1 R4 O H( \/ P" m& P2 M4 k
Data acquisition, 资料收集
3 J% k7 J7 \9 U/ x: E3 M) cData bank, 数据库
, A& x/ e# g2 U2 A* k; @) JData capacity, 数据容量
0 Z: i) _0 H ~6 O& cData deficiencies, 数据缺乏, r7 M/ ^3 O% n
Data handling, 数据处理2 g. ]7 G. S7 G+ O: \1 o- ]( N/ V
Data manipulation, 数据处理% I& a. e6 t- @
Data processing, 数据处理
7 R& y1 K: H0 I. X7 KData reduction, 数据缩减
. [" b q0 s5 _/ mData set, 数据集4 S8 x. J) ~" ?- t
Data sources, 数据来源" R# c: K+ P' l% k3 p# w K K8 A
Data transformation, 数据变换
% z. _' K( H. c. q0 k9 O; F* GData validity, 数据有效性
. [1 I6 j/ |' ]) U, R8 dData-in, 数据输入
7 N1 o/ h! i' W8 y3 W2 ?0 eData-out, 数据输出9 w" |6 e6 E4 s, c9 c3 I
Dead time, 停滞期6 Z f+ Z" C5 m8 x
Degree of freedom, 自由度: T+ m- {, ]* a0 K0 A9 C' ]- r
Degree of precision, 精密度
% R [' p. O5 x T0 m1 pDegree of reliability, 可靠性程度- G9 Y& ~5 y5 b2 A) l2 H
Degression, 递减5 ?+ I7 ~% F7 x, [ Q3 @
Density function, 密度函数8 }2 @: I2 Q# s X0 ?6 U
Density of data points, 数据点的密度
" }- G; l9 z" _% jDependent variable, 应变量/依变量/因变量: g3 m3 q3 [/ K4 f3 m3 z- G6 B4 y
Dependent variable, 因变量! c) v; v* w$ h+ J7 s6 a
Depth, 深度
7 E9 D) x' l7 `* L8 S. y+ lDerivative matrix, 导数矩阵
; Z7 ?- V! M' ?, p/ qDerivative-free methods, 无导数方法7 g- E6 ^2 B: H. k
Design, 设计! R% R4 J7 j+ ?/ _
Determinacy, 确定性
9 v, m( i$ F' ]( f# }) ^Determinant, 行列式
3 @3 j5 w5 U2 Q5 A- h" |Determinant, 决定因素
' B8 h8 U/ F/ e2 lDeviation, 离差
; v' H6 u3 X3 ]& s& vDeviation from average, 离均差
( @$ N: w& B5 C: N* J' o* _- dDiagnostic plot, 诊断图& \$ w! h: b" c5 v
Dichotomous variable, 二分变量6 [2 F3 E4 n! u9 F& f( u
Differential equation, 微分方程
0 K7 t: Y0 g/ }- HDirect standardization, 直接标准化法6 e3 O6 A2 A3 ~- h
Discrete variable, 离散型变量 c) v* t7 H; C2 \5 j
DISCRIMINANT, 判断
& j. ?! ^- {$ u+ P- }% v, wDiscriminant analysis, 判别分析
0 X! h$ ~' }& q- P a3 q; \Discriminant coefficient, 判别系数
5 ]! e: T" }8 g4 _Discriminant function, 判别值
8 P k+ W2 Z4 q: q4 tDispersion, 散布/分散度* v& ? w, |1 O4 I# @6 {( ]
Disproportional, 不成比例的8 S3 H; P0 Q! Z$ B/ H& w3 T
Disproportionate sub-class numbers, 不成比例次级组含量
, n# z( F I; `Distribution free, 分布无关性/免分布
. d2 `! L% k4 }+ E7 PDistribution shape, 分布形状
- Z9 B3 i8 T; P/ ?Distribution-free method, 任意分布法" J. a0 x' L4 J3 n/ x
Distributive laws, 分配律) U: Q+ P5 g( i& e o
Disturbance, 随机扰动项
3 m+ p8 ~6 l1 \5 l# ^Dose response curve, 剂量反应曲线
8 v% a% e2 t& @, Z! FDouble blind method, 双盲法2 q, \# p" {6 A ~# ~: g o3 N
Double blind trial, 双盲试验* L3 L* t2 A( f' @5 K8 G
Double exponential distribution, 双指数分布
. y/ N% C0 c! U ^( j# v$ XDouble logarithmic, 双对数
3 F/ [6 {" b2 y) l0 I3 i3 `Downward rank, 降秩
6 x/ n8 e8 _6 u' {8 l1 j# y! bDual-space plot, 对偶空间图' w5 G! X- [/ D) Z" H
DUD, 无导数方法
2 s. f9 ?0 F8 LDuncan's new multiple range method, 新复极差法/Duncan新法5 X; h; r- e! {! t
Effect, 实验效应
) M4 v, ?) J2 u0 PEigenvalue, 特征值5 s+ q; K9 R( m( m0 h0 M# X
Eigenvector, 特征向量! }$ j; c" x3 o8 K1 ^7 U% {
Ellipse, 椭圆
2 X/ C, v; P5 y. I9 M0 \Empirical distribution, 经验分布
! N" C$ R- T5 O4 M) S* gEmpirical probability, 经验概率单位
% J+ D/ h% X3 i( D8 ZEnumeration data, 计数资料. q; q3 G3 S2 V1 Y
Equal sun-class number, 相等次级组含量
- l1 K9 Y# ?( V# B) I1 o' \ BEqually likely, 等可能% ` ^! h" W8 }" g& j$ {
Equivariance, 同变性2 @ q3 d3 }. h0 {. R( n
Error, 误差/错误1 ]! {8 ]% m8 B7 v+ j7 }
Error of estimate, 估计误差
, f; U9 ]! ^' C) VError type I, 第一类错误5 I1 Y$ p% l5 w6 ~0 {
Error type II, 第二类错误
9 n! O( [; Z/ ~9 ]3 Z' [% tEstimand, 被估量
t& A) d( r3 ?6 ?( G+ A* YEstimated error mean squares, 估计误差均方
- E# Z% n9 j8 v) s" e' i0 f4 H+ nEstimated error sum of squares, 估计误差平方和4 g2 z8 Y5 G( O' [
Euclidean distance, 欧式距离. V5 |' {; f% \
Event, 事件- t) N# \( S: C4 r
Event, 事件
) ~& u! ]1 A8 s; |$ aExceptional data point, 异常数据点
0 x- j1 Z5 z" v* M; zExpectation plane, 期望平面, j3 [4 X s/ z. i" U' ` L
Expectation surface, 期望曲面
/ N5 q0 \- p! b4 kExpected values, 期望值. @, B% W+ c5 P$ Z
Experiment, 实验
* G% b0 r& Y2 N; U* c) tExperimental sampling, 试验抽样& j! B) `5 k2 h2 ` z5 v" S! M, O5 }0 G
Experimental unit, 试验单位* c! ]$ p6 g9 R
Explanatory variable, 说明变量
9 L" Y0 K% k8 S6 V* _" |3 D& m" aExploratory data analysis, 探索性数据分析4 o; B: w5 ^* {: B! M
Explore Summarize, 探索-摘要
C- ?9 i3 M' Q9 K4 P0 P* EExponential curve, 指数曲线
/ q7 V1 ^5 ]/ S* V" z7 kExponential growth, 指数式增长2 K, \$ ~5 w' c9 b& u! [
EXSMOOTH, 指数平滑方法 / r$ X w X8 |' c0 R7 `* v+ A
Extended fit, 扩充拟合
3 F" H6 {, Z( \6 F5 fExtra parameter, 附加参数$ @7 ~& I- B7 L2 K
Extrapolation, 外推法
; s8 _, B# ~- }6 P$ L u4 qExtreme observation, 末端观测值' I0 P# m0 ~+ F6 f/ t
Extremes, 极端值/极值5 J) }2 c# n4 r+ w7 j' `; D
F distribution, F分布; j7 ]$ {$ R' D r
F test, F检验2 _. H7 h n# m0 K9 [
Factor, 因素/因子+ Q9 h2 y) X6 T6 _$ h6 O% R
Factor analysis, 因子分析
- ?, W" }9 q6 CFactor Analysis, 因子分析
( h& x% l1 j3 I9 W( y1 [ [Factor score, 因子得分 0 U+ f0 G: X) d
Factorial, 阶乘
$ J+ }2 i+ p) G+ o2 }4 f0 cFactorial design, 析因试验设计
+ @) D/ n+ f c$ B6 `& pFalse negative, 假阴性6 i6 g4 ~6 I9 o" [' m9 t6 `1 o
False negative error, 假阴性错误
* n' Y6 r. k% O8 i) J6 OFamily of distributions, 分布族
- Q% B4 I6 n QFamily of estimators, 估计量族
9 B, @% o {* a; F6 f# `Fanning, 扇面6 _5 T& M) s3 l+ H
Fatality rate, 病死率1 @' n8 ^& l! u0 S7 }) {% B
Field investigation, 现场调查
1 c2 l9 b# g5 a7 y& WField survey, 现场调查
# ]$ x* S! |4 F) u1 z$ |, P7 ]) gFinite population, 有限总体! @9 k, Y* r. P: \5 Q
Finite-sample, 有限样本( N" W, ~1 u4 Z4 w+ N
First derivative, 一阶导数/ U. L$ ~4 Z1 A3 E" ]; ?4 M: U2 ]
First principal component, 第一主成分
1 x: r5 i% m! \1 ]! s4 ]8 {8 `First quartile, 第一四分位数+ y' b D. L& [1 w h) Z8 m
Fisher information, 费雪信息量9 \8 u) q: [- T9 W; D
Fitted value, 拟合值
& e! M8 I3 w& B# m5 ?Fitting a curve, 曲线拟合# r. J+ _2 v, T
Fixed base, 定基" P6 _0 T. R$ p0 A
Fluctuation, 随机起伏
6 x( T; o3 D6 B4 Z' l/ f4 p) j. VForecast, 预测
U: Y# I' x/ F5 ]Four fold table, 四格表$ s x4 k3 g" }+ }! U. Z; e1 m; ?
Fourth, 四分点
0 ]1 }- @( s# o1 d: J' d; Z9 Z# @& YFraction blow, 左侧比率
4 V4 y( c$ {, F) ^4 N" xFractional error, 相对误差& P) `; j: S ^! r$ ^* n
Frequency, 频率
7 l9 P! D( u7 K; G- U! ?Frequency polygon, 频数多边图
$ t J3 ~9 T0 c$ n, h9 [% u- S1 `Frontier point, 界限点9 k' d# f# `1 f/ q2 I$ {; X; X
Function relationship, 泛函关系
( R) }, i8 `2 SGamma distribution, 伽玛分布9 `$ D1 u' ` I1 H
Gauss increment, 高斯增量; | A, ]" D: O, q9 [
Gaussian distribution, 高斯分布/正态分布
" @1 c6 E- c' ~1 [# NGauss-Newton increment, 高斯-牛顿增量
8 y* J& T h9 ?1 U6 fGeneral census, 全面普查5 q* `* ^5 F! X/ l6 W( t [+ Z
GENLOG (Generalized liner models), 广义线性模型 $ B# }( U+ k6 L7 `: r7 \* N6 v1 F( M
Geometric mean, 几何平均数1 J) q# v8 L' R: l+ K3 e
Gini's mean difference, 基尼均差' }" r( W" g2 ?' o9 V
GLM (General liner models), 一般线性模型 . V3 N7 U: f: K H; y
Goodness of fit, 拟和优度/配合度
; X% b0 q5 L7 FGradient of determinant, 行列式的梯度) Z% M" `* P9 q9 L# a2 r! D7 Q
Graeco-Latin square, 希腊拉丁方8 N2 D @5 B% i1 `( m/ G
Grand mean, 总均值8 @& _% B$ f4 M9 y9 A; `
Gross errors, 重大错误5 j- k9 C& I5 @1 o- H
Gross-error sensitivity, 大错敏感度
- d4 z6 A5 t+ T' }* N& TGroup averages, 分组平均7 f& h+ e Y+ e- ?+ I
Grouped data, 分组资料
; S7 Q; b- [, u. F, G- x2 YGuessed mean, 假定平均数* _6 [% h' e6 D4 T- h9 ?9 o# G
Half-life, 半衰期7 t# @% J& L; a3 }+ B6 M
Hampel M-estimators, 汉佩尔M估计量
6 m1 q" \* s! ?& S Q! U4 cHappenstance, 偶然事件
; j' v4 o* Y8 q1 [, @Harmonic mean, 调和均数
2 k9 |2 s: ] D4 r) a9 l$ ]: nHazard function, 风险均数
/ @/ c( H7 r5 y& d; Q& V6 EHazard rate, 风险率4 J: j) Y6 S9 `8 a" `7 b
Heading, 标目
) b1 G0 J) f9 x- d, q' T; ~8 f' _Heavy-tailed distribution, 重尾分布( {- V# ^* h' u" u- j
Hessian array, 海森立体阵' g4 W4 g) ^) X, _
Heterogeneity, 不同质
* {" g; t( K& o! }Heterogeneity of variance, 方差不齐
4 ]/ R& t" |* L* ~& M/ f+ K3 `Hierarchical classification, 组内分组
# X1 m) q- f& z5 E/ c: E$ THierarchical clustering method, 系统聚类法5 n; Q3 _& F2 J! P
High-leverage point, 高杠杆率点
& i* J- F( ?! p/ t$ hHILOGLINEAR, 多维列联表的层次对数线性模型8 m6 C! \% e" v' t6 s. t" i
Hinge, 折叶点9 Y5 ]4 H4 e! Y) Y3 W
Histogram, 直方图
( O7 A7 Q( R6 p( p& b) @/ SHistorical cohort study, 历史性队列研究 6 Q8 l7 F# _: j8 [+ ]+ g+ H. O5 {
Holes, 空洞8 M. j, F1 @4 C1 q6 U, O
HOMALS, 多重响应分析
5 r4 Y! |, Y& D, tHomogeneity of variance, 方差齐性2 H& h% m' x8 ~* O6 m
Homogeneity test, 齐性检验
3 K5 F h( X7 {& U. e6 OHuber M-estimators, 休伯M估计量
, e2 o; a5 [' w1 p! ^Hyperbola, 双曲线( |+ [3 h2 e* Y1 Y
Hypothesis testing, 假设检验4 y$ M4 |% g. `1 s0 f5 ]
Hypothetical universe, 假设总体
y/ ?* J1 |; J# s6 pImpossible event, 不可能事件 ` v1 k4 B; ^' ^# V) v/ ^
Independence, 独立性
3 W) T8 k/ `: U3 z5 o* x: QIndependent variable, 自变量
$ D$ d2 a# X7 W! H+ QIndex, 指标/指数
Q3 q. [) B! k3 ?( IIndirect standardization, 间接标准化法
5 w1 p0 i8 d# L0 H1 eIndividual, 个体
* A& r5 n$ n8 y- S- |, ZInference band, 推断带
# b, g- G/ X! \3 ^3 YInfinite population, 无限总体" z1 _& R3 ]2 C; m' Z1 v+ A( b3 [
Infinitely great, 无穷大" M$ P' N0 v! V* v) s, K
Infinitely small, 无穷小; F0 o9 v+ x3 ^3 s
Influence curve, 影响曲线
3 Q' r; j+ ?: \" |% eInformation capacity, 信息容量
$ u" O6 {. U; H% Z, z* SInitial condition, 初始条件8 A+ }7 b" a# S! ]1 Y
Initial estimate, 初始估计值 q0 N/ Y) a$ b% t8 Q
Initial level, 最初水平- W, W8 X$ v4 q$ w7 v8 x/ }
Interaction, 交互作用
7 x" u- E1 x4 @9 M+ B/ O, nInteraction terms, 交互作用项# C- ^; Z5 T0 x1 l; y: D: p
Intercept, 截距
1 l; {8 ]9 `9 i& ]/ V& H9 JInterpolation, 内插法- n7 A; I, y; Z: L/ W( |) P
Interquartile range, 四分位距! u B! J2 Q* T' D; v: T9 f% D
Interval estimation, 区间估计
- L/ q: n1 V3 u' B1 Z# W8 KIntervals of equal probability, 等概率区间
7 w8 b* B7 }5 n# f nIntrinsic curvature, 固有曲率
O1 }( i( R' P! [9 }/ @Invariance, 不变性
- v8 O+ p. ? E% c BInverse matrix, 逆矩阵# K! O6 `& V4 b2 X
Inverse probability, 逆概率
3 o# _+ _9 N% P( y7 FInverse sine transformation, 反正弦变换
6 `4 Z: _3 }- c- Q% OIteration, 迭代 ! U8 F# m$ S6 A8 W) }3 s4 `1 R1 ]7 b
Jacobian determinant, 雅可比行列式
2 h7 Z9 [- j/ k0 sJoint distribution function, 分布函数; D3 J% a* n9 G2 n
Joint probability, 联合概率7 a) T ?% S- ^/ P0 x
Joint probability distribution, 联合概率分布1 Q8 K3 Y* ~ `1 D2 B# y5 | o
K means method, 逐步聚类法
5 l$ {# P) c% x7 L# o- V- }Kaplan-Meier, 评估事件的时间长度 * b5 [7 w# b) V5 u& F! ~7 r
Kaplan-Merier chart, Kaplan-Merier图5 R- A6 T: |; |, B3 C! B
Kendall's rank correlation, Kendall等级相关0 P" u' F% ~% J) ^: R x+ q$ k) q: M
Kinetic, 动力学; _) T9 `4 h) H7 d
Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验
; a( }8 ?: v) y! v5 ZKruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验# G" w) J9 N- h* n7 _3 X4 z6 I: p
Kurtosis, 峰度% s$ B4 N' R0 N1 a4 [! ?
Lack of fit, 失拟, f- Y9 e* Z& B& G7 W: s
Ladder of powers, 幂阶梯
7 L7 ]* H' E; K RLag, 滞后
; V0 _( V/ O; q4 M4 l& T3 `Large sample, 大样本6 r& v2 X/ y; M% y+ b: \
Large sample test, 大样本检验+ c% f6 F7 m, ^0 B: G! O
Latin square, 拉丁方: @# B( y& w k( b- C* D }( U& U
Latin square design, 拉丁方设计' Q9 `; H u8 }( [, C
Leakage, 泄漏
8 s8 Y! F- d" a4 P% \' cLeast favorable configuration, 最不利构形
# G, [ ?' I7 ?0 s/ {. I: w4 XLeast favorable distribution, 最不利分布
- K1 r) s+ X% U: s2 A% ^Least significant difference, 最小显著差法
$ q1 l7 i* V8 rLeast square method, 最小二乘法- V( H9 C% j7 ]: v0 J! P1 Y
Least-absolute-residuals estimates, 最小绝对残差估计% }# r% p2 g8 O: ]1 s$ J1 ?
Least-absolute-residuals fit, 最小绝对残差拟合+ b6 a3 d+ X; ]" U
Least-absolute-residuals line, 最小绝对残差线
, v) U% W% m1 u# I$ JLegend, 图例
# |9 w- Y9 |' U4 ^3 T1 XL-estimator, L估计量
4 `" W( D; e. Z/ N, K: E, z* nL-estimator of location, 位置L估计量
4 l: T( I; h" v% WL-estimator of scale, 尺度L估计量
: [* w) T6 y) p" @% U$ g8 oLevel, 水平
8 x; h0 h& S& |5 P, t R# n5 o# {Life expectance, 预期期望寿命5 F- r0 E0 J* @% `
Life table, 寿命表
) N6 E4 V3 M, v S LLife table method, 生命表法( \8 p6 g/ A) K; T7 @
Light-tailed distribution, 轻尾分布( f) x( h. T3 O! x# E
Likelihood function, 似然函数
& {) j3 M6 S; Y! C+ |Likelihood ratio, 似然比& r8 ^& q3 D( X+ a3 K
line graph, 线图
8 U& Q0 s: N# m0 @; xLinear correlation, 直线相关: a; L+ B# x, T9 H
Linear equation, 线性方程1 [( r( k: u( X; |; a3 ?: R' j) h) I
Linear programming, 线性规划" x5 q0 T% q4 U5 |( d" d }
Linear regression, 直线回归
* y6 d& R+ Z4 s. t. @# C" l, vLinear Regression, 线性回归3 ?, C" _9 T$ G# } V% L
Linear trend, 线性趋势
3 r4 g" X, q" `9 @Loading, 载荷 / M5 }6 v' n, K) C5 N* G! q
Location and scale equivariance, 位置尺度同变性) N* m! r- R3 J! n
Location equivariance, 位置同变性
3 C! N3 ]7 v% [8 V; c8 J- k6 MLocation invariance, 位置不变性
: i: s% v9 s2 k0 j& L& z# j% dLocation scale family, 位置尺度族" ]& g: K: p% i j! `
Log rank test, 时序检验
" U+ t( S( S9 x8 |# B: n: nLogarithmic curve, 对数曲线
( x5 I# w: t+ p U2 O4 \; xLogarithmic normal distribution, 对数正态分布
3 v1 V6 \; _/ z: w, `6 a) b2 \Logarithmic scale, 对数尺度
- s- a/ e* R) G2 B! x, rLogarithmic transformation, 对数变换
# a K, o( [4 A+ V( I( [0 ^; NLogic check, 逻辑检查8 p/ e; k3 a6 W0 v3 O
Logistic distribution, 逻辑斯特分布
" a* a- }. L1 N, ?' w! I; [Logit transformation, Logit转换
* g3 R2 n6 z* \- B) ?- a/ ALOGLINEAR, 多维列联表通用模型 Q* E: T3 E/ J- E H
Lognormal distribution, 对数正态分布$ ^5 m4 u( F/ f8 w$ {1 L
Lost function, 损失函数 L' y' q A7 z" H% o/ O
Low correlation, 低度相关
% |. q9 p! [9 u2 Q* ~Lower limit, 下限& v: F; s$ ?) C* G# ~% v J. W
Lowest-attained variance, 最小可达方差
S4 }: w! V. K/ C" D, U, ILSD, 最小显著差法的简称
0 J1 i; f$ i* J* c% K7 o9 z0 {Lurking variable, 潜在变量
* b* i8 A) p) TMain effect, 主效应9 x5 `5 D) @$ p3 L' q
Major heading, 主辞标目
1 ]4 n6 n+ Y' uMarginal density function, 边缘密度函数2 a, k) O% r0 a
Marginal probability, 边缘概率
$ D2 {1 _" i% E9 m& @( G XMarginal probability distribution, 边缘概率分布$ u3 L' W' D" v
Matched data, 配对资料. T6 a; i, L( n" j& I
Matched distribution, 匹配过分布" S9 S# P0 d! q! G
Matching of distribution, 分布的匹配
* L$ Q) s: v! t1 MMatching of transformation, 变换的匹配
9 c3 e3 _) k7 I* F4 uMathematical expectation, 数学期望6 u. Z0 a. ]$ _: W
Mathematical model, 数学模型
; p8 Y [& c4 T& ]Maximum L-estimator, 极大极小L 估计量+ ?1 L; ~- Y' `' M8 A n
Maximum likelihood method, 最大似然法9 F0 f: k: d6 x& v. L3 n
Mean, 均数5 b+ g, p, @; t2 {3 M
Mean squares between groups, 组间均方
. K1 d. o5 F- _5 g gMean squares within group, 组内均方2 q& l! X* `1 @) ]8 g- _
Means (Compare means), 均值-均值比较7 I! |8 ?; H4 O& L% I! e' x, P" r& `
Median, 中位数
1 U4 D' v9 C( ?. R' `Median effective dose, 半数效量
0 i4 V' S; q: F* @, ?Median lethal dose, 半数致死量
a; x/ j- f! }8 yMedian polish, 中位数平滑; \; f% s! `8 T% R
Median test, 中位数检验: \# ]2 j! m3 J. [7 Z! K! N
Minimal sufficient statistic, 最小充分统计量+ {2 z/ K3 e1 E1 D: Y5 G! D. A
Minimum distance estimation, 最小距离估计- g3 O) t- t6 b) {- s, `
Minimum effective dose, 最小有效量
- w7 b; ]% S) G$ Q7 K/ r8 |Minimum lethal dose, 最小致死量
6 E, K; Q8 x0 q7 J! IMinimum variance estimator, 最小方差估计量# A) ?2 C+ U( |6 o$ J ]) o( f
MINITAB, 统计软件包
, m( `& `) N' j' N: ^Minor heading, 宾词标目
! ]/ B& n. D% T; p4 _9 f. C" QMissing data, 缺失值
) o q/ o. {( e/ b+ C5 RModel specification, 模型的确定
' L6 i+ l9 U) \4 Q: C8 i9 aModeling Statistics , 模型统计
/ c5 Q0 `( E( S) SModels for outliers, 离群值模型5 {4 E' y& J6 E7 c' w4 m
Modifying the model, 模型的修正
8 e9 i8 B- R, I" Y( DModulus of continuity, 连续性模0 z. H" G6 }0 k0 ?3 o
Morbidity, 发病率 6 c3 F" D9 {% B0 M
Most favorable configuration, 最有利构形
# v& o2 G# k$ W9 VMultidimensional Scaling (ASCAL), 多维尺度/多维标度6 ~1 r2 X& }8 G; F5 I% A) a
Multinomial Logistic Regression , 多项逻辑斯蒂回归8 e3 a5 f" v! d. S, C2 ^4 w( n: W
Multiple comparison, 多重比较8 |" n6 V* }1 a
Multiple correlation , 复相关9 B1 M. Z8 p0 W) ^! n# `7 n
Multiple covariance, 多元协方差) \8 t" G, h; y3 |: t4 t
Multiple linear regression, 多元线性回归1 p; q- R! [ A9 _; r! ~
Multiple response , 多重选项. D/ A4 Q I- f+ R6 _
Multiple solutions, 多解# W u0 m% U0 i: z Z- i/ D
Multiplication theorem, 乘法定理. H6 }( R. a( H7 I
Multiresponse, 多元响应
, e% X- {- ~: Q* {* F- dMulti-stage sampling, 多阶段抽样7 ~) Z& [# _6 ?9 m% j
Multivariate T distribution, 多元T分布$ H @1 H+ Z! Z4 r" p0 r e
Mutual exclusive, 互不相容
, Q, m# w1 a/ _$ z7 e5 p: BMutual independence, 互相独立
2 G# h. a, N6 p6 N8 h2 rNatural boundary, 自然边界
0 [8 T" _2 C5 \Natural dead, 自然死亡
! v! q" x f) P; G" P6 X9 ]Natural zero, 自然零8 F2 V; }4 v! ~# v4 A5 d# Y2 u
Negative correlation, 负相关 B1 C# s V) L6 `. W
Negative linear correlation, 负线性相关
: n. r+ Q) t, M4 U. g3 _Negatively skewed, 负偏
& z& s* ?# x1 D; u7 yNewman-Keuls method, q检验, r" {' K' d1 B" g- I7 ?
NK method, q检验 c; p9 y4 u% D* ~, n
No statistical significance, 无统计意义
1 V& x; t7 p: @, R- JNominal variable, 名义变量
& u& Z7 ~" I. m# N% @! HNonconstancy of variability, 变异的非定常性
- B4 M* ]2 {5 o8 lNonlinear regression, 非线性相关% @3 X( [0 R" g
Nonparametric statistics, 非参数统计
6 J7 _' x" e3 R! D0 @Nonparametric test, 非参数检验3 S" v! ], d$ _2 v
Nonparametric tests, 非参数检验" m/ z* C( V3 _ c9 z3 j
Normal deviate, 正态离差
0 E0 e, k" A, y+ _5 JNormal distribution, 正态分布
$ Z8 L, ^, z3 wNormal equation, 正规方程组
! l4 w+ G- |* G6 _" I0 QNormal ranges, 正常范围
8 j. h1 w" y1 K1 [" f7 @0 r7 @Normal value, 正常值
) Q) N5 Q0 J. Z! R8 D% uNuisance parameter, 多余参数/讨厌参数
H x- r/ {5 Y) a8 M$ o# P3 L& UNull hypothesis, 无效假设
`$ \3 o1 d7 g- V D' i! M3 hNumerical variable, 数值变量 D& A2 X0 K5 S3 p
Objective function, 目标函数
5 S* P$ z5 w) K/ Y* O n( U4 }) aObservation unit, 观察单位+ O/ s! I0 G! Z" V, \1 \* R
Observed value, 观察值" G7 c$ v2 f. \ g
One sided test, 单侧检验/ m3 a7 g, G5 z6 a6 l# a2 g
One-way analysis of variance, 单因素方差分析! f4 Q7 c/ L2 O$ T4 a
Oneway ANOVA , 单因素方差分析
3 n2 r" ^+ H! x5 rOpen sequential trial, 开放型序贯设计: C5 g1 \* H, O; }7 [/ f. P! V' ~
Optrim, 优切尾 B; c1 O/ N/ u4 ]5 Q& \3 _
Optrim efficiency, 优切尾效率; [% a- J: B0 y- z) J6 v0 V2 J) n3 c
Order statistics, 顺序统计量
4 Z9 a) {# `% OOrdered categories, 有序分类
: k/ a W! [+ I6 b# \Ordinal logistic regression , 序数逻辑斯蒂回归
8 _) F) _4 w! w- Y- t. yOrdinal variable, 有序变量/ {: T5 h! e/ n
Orthogonal basis, 正交基
! r5 ?7 r6 b* v% O1 l3 bOrthogonal design, 正交试验设计
, w0 }6 a+ F) ?8 {$ t. p# L7 dOrthogonality conditions, 正交条件$ l$ ?) \' g: x( ~! K: J# ^+ P
ORTHOPLAN, 正交设计 1 h( e# L& C+ R+ P* ]8 m% d
Outlier cutoffs, 离群值截断点 B# U) e& `9 L4 D5 B$ Q! u
Outliers, 极端值
9 r0 m+ n, I# ?: l/ a% M5 SOVERALS , 多组变量的非线性正规相关 . M' w [# f: h7 e( {
Overshoot, 迭代过度2 c; I: Y5 b* z) U5 |
Paired design, 配对设计- ]0 M( w0 s3 @# p- P* B: w
Paired sample, 配对样本1 y9 w0 m5 C' o5 k
Pairwise slopes, 成对斜率9 x: Z0 y* a, @2 ^2 F
Parabola, 抛物线* L- ]$ n! [# n3 [8 \( h7 u& Q
Parallel tests, 平行试验
& J2 b9 A ]& Y1 JParameter, 参数
% g/ f( J2 Q) A3 C+ tParametric statistics, 参数统计$ _+ P9 G9 u5 ~9 I" D) h5 K
Parametric test, 参数检验( B0 H. }+ k- G- g" @( ]* x5 j) G
Partial correlation, 偏相关
/ G( C8 X; k9 q4 S1 g% u7 b9 @Partial regression, 偏回归
8 |- f3 k. `/ V9 k. N8 FPartial sorting, 偏排序) f. q# O2 B8 Z3 y
Partials residuals, 偏残差
3 @1 [4 ]7 ~4 i+ T7 GPattern, 模式
4 l1 n5 `" V3 }) ]# n# ]Pearson curves, 皮尔逊曲线
$ c' G! a: S* E! e8 G' FPeeling, 退层 f2 f. z! N% Z$ f8 M) j
Percent bar graph, 百分条形图
$ e' I' l U0 X0 }Percentage, 百分比
2 V" F& w( \& M) PPercentile, 百分位数6 H8 f2 i- `( M. i# m
Percentile curves, 百分位曲线
& P; _: M3 q* vPeriodicity, 周期性2 p s( z3 ^: n9 ~) T/ t% e o
Permutation, 排列
p$ p" D3 @' e9 _3 i) z: d5 NP-estimator, P估计量
9 A' }8 ~) c; x6 i2 ]+ R: G6 F qPie graph, 饼图6 b, Z( T3 }; b
Pitman estimator, 皮特曼估计量
8 z- |' I6 W) E$ X' Q. oPivot, 枢轴量( U8 m! ?0 O9 {8 R7 r8 t
Planar, 平坦: g, ]8 h. f( N9 X
Planar assumption, 平面的假设* y8 E% A G; X5 T( a% U2 ?
PLANCARDS, 生成试验的计划卡 v$ R8 l, l- E9 W! P5 ]: q- w) O
Point estimation, 点估计
1 z" | D# X- `7 L+ A4 x9 IPoisson distribution, 泊松分布" A4 o5 a& F: P: R0 `7 c$ w3 n
Polishing, 平滑5 o/ S2 l2 }$ ^# m$ i; x5 n3 t, T
Polled standard deviation, 合并标准差, ~4 T: {# N/ \. p8 P0 ^
Polled variance, 合并方差, _# E, F i; e
Polygon, 多边图: D: ?/ G& u9 N5 l, j
Polynomial, 多项式2 p0 x, j6 `, g) ~
Polynomial curve, 多项式曲线& a5 S. Z) }' {2 e# c5 ~
Population, 总体& c" D: r) V, g b
Population attributable risk, 人群归因危险度
: _& Q4 X, m- e6 p( C" ~Positive correlation, 正相关9 x) D6 |7 L% m
Positively skewed, 正偏0 C: m2 z8 s! P* y1 ]4 M
Posterior distribution, 后验分布/ H- i) ]- T* ^3 U, M5 I- D
Power of a test, 检验效能
z) z8 }. p6 J$ @2 n# J$ A! _Precision, 精密度4 s& n& }% ^: \: ~+ z
Predicted value, 预测值3 i8 G ^$ b. d6 _1 T. r1 q- d
Preliminary analysis, 预备性分析
; ^8 \8 G$ E6 e5 I8 u) FPrincipal component analysis, 主成分分析
( S- h$ k$ m8 z4 `! m! nPrior distribution, 先验分布5 I- c3 u$ F) b: [
Prior probability, 先验概率
/ _8 x4 L/ W4 V: s, SProbabilistic model, 概率模型
5 i6 E2 K! w1 V! F1 S2 T5 Q1 aprobability, 概率0 m9 c5 Q% A7 s' v
Probability density, 概率密度: l% R: I! U3 J6 [! t! {
Product moment, 乘积矩/协方差6 y4 J! H; C# ]9 ^
Profile trace, 截面迹图3 n0 e ~0 O1 b
Proportion, 比/构成比
! \; T8 A' E5 ~4 Z# XProportion allocation in stratified random sampling, 按比例分层随机抽样- M4 S( @5 o% h. M$ t6 ^- e
Proportionate, 成比例( L/ n5 l4 x. ^) H6 ~
Proportionate sub-class numbers, 成比例次级组含量
* X" Y" T3 |' O. C. w. mProspective study, 前瞻性调查; ]0 U$ |' ]" N. Z- L- c
Proximities, 亲近性
! n4 i: H. k1 d2 l$ s+ z) y" q. oPseudo F test, 近似F检验
5 Z$ r# G4 y/ U: J% L9 g' `Pseudo model, 近似模型
' N' A+ Y, v GPseudosigma, 伪标准差
2 ^5 L# L% e& V* \Purposive sampling, 有目的抽样* O2 D: [/ a. l. R' f1 N9 Q- S
QR decomposition, QR分解
. s2 H) @6 B4 g9 MQuadratic approximation, 二次近似
- k% E6 `- s. O, E6 j1 u$ q( ^+ l- pQualitative classification, 属性分类. L( N( V8 \& c9 b6 N2 H' j) x
Qualitative method, 定性方法
n* V' Q7 z7 ~% r: NQuantile-quantile plot, 分位数-分位数图/Q-Q图
. Y9 [3 T) W B7 S- {Quantitative analysis, 定量分析7 z+ N% N$ T2 Y! H+ r
Quartile, 四分位数( H- ^6 ?1 o) f6 U; Q k9 G
Quick Cluster, 快速聚类! q L0 p, S; }( F' M3 w/ R
Radix sort, 基数排序9 w# u/ j- w7 M4 }( P F7 ^7 B
Random allocation, 随机化分组% B L9 i% z) L1 X1 E
Random blocks design, 随机区组设计8 F# N! Z. J2 X. l, T
Random event, 随机事件& d4 {( k4 z3 G& R: K/ O' J# S: C
Randomization, 随机化* ? Y/ H. n) [8 t
Range, 极差/全距- \) q# P9 E- K% S2 J4 q; q
Rank correlation, 等级相关- h6 u( N+ t8 Z+ ?% C4 z/ D3 g6 ]
Rank sum test, 秩和检验( [, R' _' d/ X% T. y) s3 m6 B
Rank test, 秩检验- O$ O B8 T- k$ J) ?1 b2 M$ W
Ranked data, 等级资料" d* ]% f7 g9 K# i& c
Rate, 比率
* F7 P# B" F( e3 h, B- SRatio, 比例
2 [2 i% O' b* T. R: @. vRaw data, 原始资料
; u+ s% a3 r/ W# f. SRaw residual, 原始残差1 u8 K: y, ~/ u/ E+ u
Rayleigh's test, 雷氏检验. C* c0 J9 u) u% @
Rayleigh's Z, 雷氏Z值 % J: k1 x1 m# v( j; V3 }3 c, N
Reciprocal, 倒数
! W: X3 B. y5 W2 E0 DReciprocal transformation, 倒数变换, Q2 O, P6 y& ~' k3 Z4 n' H# s( H
Recording, 记录
, @+ q* K/ F6 r( H4 WRedescending estimators, 回降估计量
+ ?1 t |; M) n* N+ m7 ?Reducing dimensions, 降维
* t, b+ Q" H' G) U. R z8 oRe-expression, 重新表达
! [4 E r+ v5 v+ o; {Reference set, 标准组3 `' R4 v: @' N( w
Region of acceptance, 接受域 c$ D& s& I; t5 N% G* w: ^
Regression coefficient, 回归系数7 L. a" ^; V; D' d* \
Regression sum of square, 回归平方和
! S9 _( |+ ~$ F- a0 y* a5 oRejection point, 拒绝点
; L4 p9 D! F% I- x9 h& n! NRelative dispersion, 相对离散度
' z* q5 \, U' ^% `# l9 |4 ?Relative number, 相对数
* \4 N# D& _' \& F* i, z" K6 DReliability, 可靠性
; g' ~/ x/ S" o. x9 fReparametrization, 重新设置参数
& V# D6 |' \0 e; \! U1 y8 ]4 n3 SReplication, 重复# ?6 V/ y, b# ]4 k$ r+ l& L7 }3 c( K
Report Summaries, 报告摘要* O' Q' ?$ _3 |9 e
Residual sum of square, 剩余平方和" l9 l/ H! b: h
Resistance, 耐抗性& \3 N. B2 X0 W, |
Resistant line, 耐抗线9 c* |* ], N6 _8 B/ N- x I
Resistant technique, 耐抗技术
' b' h' b- B! n7 I# ~, YR-estimator of location, 位置R估计量
9 B, D" t- ~3 n- b. N8 i, wR-estimator of scale, 尺度R估计量( j4 c# U( d+ J m% r4 f
Retrospective study, 回顾性调查* Z* l* L9 m W# }
Ridge trace, 岭迹
& j: V8 u; O6 JRidit analysis, Ridit分析
7 D& y* f0 _" U( o5 |, S7 o. Z2 u8 LRotation, 旋转
5 ^( \4 |- D$ s, Q+ U# `7 CRounding, 舍入. O( s+ b/ Z5 |/ T! t
Row, 行
x# P; K0 x9 _8 f3 I' ]Row effects, 行效应
8 d) g# w+ q7 o& ^/ ~; ?* dRow factor, 行因素. }4 b0 r) ]& V: L5 g( k) G7 u d, w
RXC table, RXC表- b7 q3 N$ f$ Q8 V$ i
Sample, 样本
4 Z" }. R7 s) ]' X9 fSample regression coefficient, 样本回归系数
; M+ I# S4 ] N% t2 p% w+ v& jSample size, 样本量
{% J9 @& o5 z5 E) v+ SSample standard deviation, 样本标准差
4 b: {4 Z( {1 I6 m7 _9 nSampling error, 抽样误差+ C% U$ v7 D) O3 [8 x( O$ B9 b4 [% K
SAS(Statistical analysis system ), SAS统计软件包
+ ~$ x+ H# ]5 h g5 A }3 EScale, 尺度/量表; y- h1 c. |5 s" p1 s
Scatter diagram, 散点图
+ f2 D' N8 e- x! B- }! uSchematic plot, 示意图/简图* B8 t8 w* C) @8 K
Score test, 计分检验& d# [6 m. d4 e/ m& p
Screening, 筛检
8 ~! g+ Q' s) }* KSEASON, 季节分析 8 [5 r0 h. ~) ]- y# T4 _
Second derivative, 二阶导数* M$ H) F0 p! q k) G8 w) n
Second principal component, 第二主成分: I5 X. E9 P% s1 |2 i# E' f
SEM (Structural equation modeling), 结构化方程模型
; V; E3 w' j# u6 s; sSemi-logarithmic graph, 半对数图6 g y8 {/ V* U/ g Y$ K% N
Semi-logarithmic paper, 半对数格纸$ |; |% q8 k+ G* v$ T" _
Sensitivity curve, 敏感度曲线
; b" l! n A& n n8 P: Q; _/ qSequential analysis, 贯序分析
4 y W; e/ C0 A1 e; l" u& }# qSequential data set, 顺序数据集( U+ b# A9 {$ F, t
Sequential design, 贯序设计% a" g2 F/ U) D
Sequential method, 贯序法
3 ?) ~6 }: X8 c4 iSequential test, 贯序检验法
) \# W2 H5 c/ t! ^0 P; q$ }Serial tests, 系列试验
( o' r$ H }2 E/ v9 T/ Q+ hShort-cut method, 简捷法
( a" M9 M7 V+ L0 N1 lSigmoid curve, S形曲线
7 o9 _" V+ G- N0 zSign function, 正负号函数& W% F6 M: {' M- Y9 P
Sign test, 符号检验
, U" X6 F" O, R" Z. WSigned rank, 符号秩
, f. N* i2 D% D, ~9 nSignificance test, 显著性检验
! [& T; D) R# }2 u. u" SSignificant figure, 有效数字
$ q" N+ D3 q2 i8 O1 FSimple cluster sampling, 简单整群抽样
9 F; {1 I) c0 eSimple correlation, 简单相关
3 _ W5 J) z# h+ Z4 Y3 R6 ~0 _Simple random sampling, 简单随机抽样5 @6 ?8 @9 c& H, V' \$ C
Simple regression, 简单回归
, I0 C; j$ a7 I: H- q8 n. }7 J5 D! gsimple table, 简单表
% G. w4 ]# |. X* @7 \. O, E5 t+ l6 @Sine estimator, 正弦估计量- F& S' ] Z E" y+ D& ^+ l$ v
Single-valued estimate, 单值估计
. t- d& K X+ M, Z7 l! D$ \1 MSingular matrix, 奇异矩阵
3 U7 A% V- w, l( W0 c0 zSkewed distribution, 偏斜分布
: q0 {& m, d1 `5 a9 ?3 ySkewness, 偏度
. H% P+ _. W# b. p! @3 |5 wSlash distribution, 斜线分布
) @9 q- ]) c& U! r" T, a& iSlope, 斜率% J% v5 V& a% \$ q" }
Smirnov test, 斯米尔诺夫检验
: ^3 T8 C2 m5 A$ I: a" |! WSource of variation, 变异来源
8 D, Q& }9 r+ D* d! ^Spearman rank correlation, 斯皮尔曼等级相关
2 m% H# O2 p9 x8 I* U4 B$ ~3 VSpecific factor, 特殊因子/ _2 I5 P7 g& |2 V4 n/ B& f; `
Specific factor variance, 特殊因子方差3 G8 e9 v$ Y* N* ]" D, M5 L& _
Spectra , 频谱# V4 Y: M/ h4 P* x! t$ ^
Spherical distribution, 球型正态分布
4 D3 b! S! P% wSpread, 展布( ~7 P8 g$ @, X
SPSS(Statistical package for the social science), SPSS统计软件包
, q5 S _% Y# f) s. zSpurious correlation, 假性相关
1 R9 c0 t- J1 S& ?& t+ A" NSquare root transformation, 平方根变换
% X7 U" V( g* O% z7 gStabilizing variance, 稳定方差* q) [! J$ S, a) ^
Standard deviation, 标准差3 j# g& E1 E- C, f. N' ]: L! {
Standard error, 标准误& h- F, p- S7 N. |
Standard error of difference, 差别的标准误9 a+ Y3 q( p+ ~7 _7 }6 F
Standard error of estimate, 标准估计误差% [& {5 Y& X6 N+ G1 Z$ h: F8 ]% ~ d
Standard error of rate, 率的标准误9 t$ W1 k) S5 R& d/ j( U
Standard normal distribution, 标准正态分布6 {! v9 J# q) G' \5 q+ L& Z0 _: z+ r
Standardization, 标准化
1 F7 p' b6 d: Z. O" [Starting value, 起始值
" W; n1 S. {2 u' ^- H. MStatistic, 统计量
$ t0 t1 Q% J5 ~! gStatistical control, 统计控制
. E, n1 G: g9 u( X9 xStatistical graph, 统计图
8 P7 G( F" L, w4 {9 OStatistical inference, 统计推断
) l1 ]% Q+ z! L6 o' B DStatistical table, 统计表7 s5 a: r4 }& r7 U6 p4 x
Steepest descent, 最速下降法+ W) i) T' U" Z7 ~) W: \$ F
Stem and leaf display, 茎叶图
" t: j8 |- \$ H* }% R0 gStep factor, 步长因子1 |% D; l# Q9 Z4 f+ ^" _
Stepwise regression, 逐步回归
# `6 h7 V$ r- p% \2 VStorage, 存
/ X6 E+ r' Z8 a$ z( ZStrata, 层(复数)
2 l) F! W) r4 L1 B rStratified sampling, 分层抽样0 L1 c- q, D. i6 F6 `, X
Stratified sampling, 分层抽样
9 F% M! P7 N( v( h6 y7 MStrength, 强度: d0 I7 k: T/ J8 p
Stringency, 严密性' T3 U5 D8 _- r( G2 W
Structural relationship, 结构关系6 A' @ y o4 u* G0 ?5 n- D
Studentized residual, 学生化残差/t化残差4 ]' E, E# c3 H2 I9 T9 a, K5 I
Sub-class numbers, 次级组含量; N- S5 r; Q/ m+ H3 D5 P
Subdividing, 分割
$ \5 X. w& A2 T1 F5 OSufficient statistic, 充分统计量8 o5 B$ V4 O/ R! S8 u
Sum of products, 积和
" v5 ]( m2 w" k/ ?3 nSum of squares, 离差平方和
1 ^: ]8 i' u5 X2 n9 Z/ w# Q# fSum of squares about regression, 回归平方和4 P+ \& C% Q8 ?
Sum of squares between groups, 组间平方和! g/ m1 E: f9 v/ E- a
Sum of squares of partial regression, 偏回归平方和2 ^1 l3 _& _! x
Sure event, 必然事件# x, u# s% N1 w5 _) E4 ~/ B
Survey, 调查
( }) w; I2 I& {* DSurvival, 生存分析- z: ]& H3 B% C ]' M* d
Survival rate, 生存率+ x0 \/ K! Y! O) F$ J& k; P9 Z, q+ M; Y
Suspended root gram, 悬吊根图
9 W6 u5 B' h( y3 u c" K2 \! A* sSymmetry, 对称
1 g$ Z: T, q g& N) P8 \Systematic error, 系统误差; g/ y3 _; K" ~
Systematic sampling, 系统抽样: {! j5 T2 q; }& j9 ]
Tags, 标签
& V3 U ~* I3 B# q4 CTail area, 尾部面积7 @5 w: f3 m0 _ ?4 i
Tail length, 尾长2 t' _3 \3 a- W/ M
Tail weight, 尾重
; q, g' m5 g5 UTangent line, 切线
% d( C% X, m" _# t5 G# ETarget distribution, 目标分布
! K/ u9 b E* o1 o2 NTaylor series, 泰勒级数
4 ~' ]! r; w( ]; O, MTendency of dispersion, 离散趋势
& \3 }# N" J) o+ U4 E0 FTesting of hypotheses, 假设检验# C' G1 U' E- z
Theoretical frequency, 理论频数4 `/ H' c9 ] Y8 V% t0 l
Time series, 时间序列7 X5 J6 L5 L& Q6 ~8 `# l( O
Tolerance interval, 容忍区间) F5 Q k& W/ j: i E
Tolerance lower limit, 容忍下限
/ w$ @! Q, ?" m- @* ETolerance upper limit, 容忍上限
2 p! Y9 q% m, n4 c7 FTorsion, 扰率
7 p# a) I* X+ b" S) [# H0 w$ HTotal sum of square, 总平方和+ S( G- o8 w/ B4 U. W
Total variation, 总变异: C t- r+ [4 h I- e
Transformation, 转换
! X0 a" P. e) ~. ?+ C1 sTreatment, 处理
% `* @5 d' p e& O5 V- STrend, 趋势1 v4 L$ [* L8 `- K9 @7 b1 o
Trend of percentage, 百分比趋势
2 q/ j: T" a3 m, Y. w4 b0 {Trial, 试验+ B: J* J1 `; ?" v; i* B. P
Trial and error method, 试错法
6 A5 J( S) ^7 f- j* hTuning constant, 细调常数
8 d8 H1 S$ S9 w ETwo sided test, 双向检验: G' B. W. i. L9 \* {# g
Two-stage least squares, 二阶最小平方9 ~ E6 G g% A
Two-stage sampling, 二阶段抽样% x4 q3 {" @3 d$ b1 S
Two-tailed test, 双侧检验# t1 C0 N f2 ]4 W
Two-way analysis of variance, 双因素方差分析
# E' I T% x5 b2 XTwo-way table, 双向表
; X" A- V+ g' t% u) ~- Y: v+ wType I error, 一类错误/α错误
: I3 H% i8 C0 j( _6 JType II error, 二类错误/β错误$ G; N- k* }- m3 N
UMVU, 方差一致最小无偏估计简称: w0 G$ J' ^5 [. x% ]/ ]
Unbiased estimate, 无偏估计1 c" `7 O* _: P2 Q7 C( p; F$ Q( I
Unconstrained nonlinear regression , 无约束非线性回归' H! N3 m6 B! y6 {* r5 s& `$ [
Unequal subclass number, 不等次级组含量
; p& W% l- N& q- U \+ |Ungrouped data, 不分组资料
5 p G% C$ N" B8 SUniform coordinate, 均匀坐标4 Q6 m" F+ c+ A4 T4 ^4 m
Uniform distribution, 均匀分布
* k- r# D- m ]& Y6 B0 S, lUniformly minimum variance unbiased estimate, 方差一致最小无偏估计+ N0 f( n1 F/ ~7 X h# O
Unit, 单元. H; x0 j9 P' M9 t: X3 ^
Unordered categories, 无序分类
8 Y5 G8 U5 \) M- |9 mUpper limit, 上限2 m2 ?. R _1 X/ ]" o- u, O
Upward rank, 升秩/ @* K+ N1 Q }' d" J& M
Vague concept, 模糊概念
) \/ e" G+ _1 ?/ {5 y& b y' ZValidity, 有效性# U& k$ K! ^ d3 W' L t' ]
VARCOMP (Variance component estimation), 方差元素估计
* d0 R5 z' G6 v: z2 F% R/ yVariability, 变异性- ]# h8 ]1 Y/ s9 _% h0 x% ]2 f& c6 x* v1 n
Variable, 变量
4 N# \6 x, [; l5 W4 [1 O. Q7 VVariance, 方差7 Y" m9 x0 o! U4 r
Variation, 变异2 ]: ~. y5 c7 G
Varimax orthogonal rotation, 方差最大正交旋转, q& `8 @' a2 A1 s5 ?
Volume of distribution, 容积1 H$ Z* O: |& _: ^7 @3 Z {, e% ?
W test, W检验) b6 g! @; C2 i1 T& h! j' N% b
Weibull distribution, 威布尔分布
% K5 ~8 ~$ w& L" n1 V9 K" r, [Weight, 权数
* z+ N0 L0 _% }. ~2 h* P! [Weighted Chi-square test, 加权卡方检验/Cochran检验
5 c9 Z w, g6 ^3 H8 g; D5 OWeighted linear regression method, 加权直线回归
; d3 {; W' V, i% NWeighted mean, 加权平均数
' s' C8 I; G( D, L# Y3 t! WWeighted mean square, 加权平均方差7 _$ \1 T8 k3 @
Weighted sum of square, 加权平方和
) r1 K* s0 V, L1 g* F( \- t4 T- lWeighting coefficient, 权重系数- z5 I! L, n( t: ~0 u
Weighting method, 加权法
4 M) W; x2 G5 R NW-estimation, W估计量
; d7 {: E0 e$ n/ M1 m! jW-estimation of location, 位置W估计量& K4 m! M" S+ `4 j! A) {; A* l8 q, a
Width, 宽度$ T4 W2 K* W$ [! a* z
Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验
3 O- v( w' M- Q9 A0 `Wild point, 野点/狂点
1 K" J( w" s& I Z- L* M8 E) _Wild value, 野值/狂值
+ I: S- \ E4 I1 N, ]. e* V% AWinsorized mean, 缩尾均值( l7 k+ m; w5 |& s
Withdraw, 失访 3 D: x1 ^5 m5 Z: D2 O" F
Youden's index, 尤登指数0 T2 f& N m e, a8 j7 Q
Z test, Z检验
2 K0 f l& R* f# S$ \; |Zero correlation, 零相关# U# j( `- H# k9 a1 M( J/ x
Z-transformation, Z变换 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?注册会员
x
|