|
|
Absolute deviation, 绝对离差
6 z2 v! l$ _! I& b l) g/ g7 Y/ y2 UAbsolute number, 绝对数
+ W- }. T6 F) L5 JAbsolute residuals, 绝对残差: H; h; n y/ X; y. ]% v! Q
Acceleration array, 加速度立体阵
1 x! }8 X Q0 ]* d/ jAcceleration in an arbitrary direction, 任意方向上的加速度
: Z n8 D: E+ y0 SAcceleration normal, 法向加速度
$ {+ r. H6 m |2 v2 s% QAcceleration space dimension, 加速度空间的维数, [& {4 v5 I+ Q5 e* n4 C& x
Acceleration tangential, 切向加速度
6 W3 J) _$ m1 J+ H8 Z+ I% m5 {' SAcceleration vector, 加速度向量
9 [6 Y$ o* ~, \4 u. C9 XAcceptable hypothesis, 可接受假设
# {$ p0 ]- W" d V( UAccumulation, 累积
q; u, J8 a+ E+ ~1 SAccuracy, 准确度# q# b" {! G9 R, \) q
Actual frequency, 实际频数- }# j5 H4 k% f( @ @
Adaptive estimator, 自适应估计量
7 q7 N L$ V# v2 ]Addition, 相加% K- `+ t& \2 O2 y5 z: O
Addition theorem, 加法定理' s* q4 F, h" H# @
Additivity, 可加性
! f" ^& I8 s7 ^* V2 ~5 PAdjusted rate, 调整率 b8 j, B& @3 f5 h* E5 i! r' k! |/ R9 T
Adjusted value, 校正值
2 O4 N, X- q% a CAdmissible error, 容许误差
$ z, S6 W2 A9 p7 V9 P( IAggregation, 聚集性- j: V8 Q( s" `7 w; f4 @
Alternative hypothesis, 备择假设! C5 I3 k2 {) m9 C. B2 W
Among groups, 组间
* g3 k( v6 p6 J mAmounts, 总量
2 C; ~- ^1 X* X3 q( pAnalysis of correlation, 相关分析. [& M( |* L3 w4 J' ?6 \
Analysis of covariance, 协方差分析
" K& `/ _; ?3 S) f, i: \; V& e- p+ ~Analysis of regression, 回归分析
( o, F# M- K# m0 \3 c! |7 HAnalysis of time series, 时间序列分析
7 P& W) k9 M4 E% W- J- hAnalysis of variance, 方差分析
, q# v! L5 S- y6 @Angular transformation, 角转换& e! @0 ?/ r) i) I% h
ANOVA (analysis of variance), 方差分析
! u" |. o* Y m, x$ @% QANOVA Models, 方差分析模型( k6 A( {+ [# o" | H
Arcing, 弧/弧旋9 A* o" e2 ]. L$ M x& J
Arcsine transformation, 反正弦变换
. W8 l4 g' s) y' W# MArea under the curve, 曲线面积
/ z* Y& m4 `- uAREG , 评估从一个时间点到下一个时间点回归相关时的误差
$ ]& k. i# [) m+ p7 b! ^ARIMA, 季节和非季节性单变量模型的极大似然估计
% B# y3 X9 p0 {; b1 qArithmetic grid paper, 算术格纸! T& }$ X _# z* Y( K
Arithmetic mean, 算术平均数( c1 |# ^" Z& k& X2 a. B# I
Arrhenius relation, 艾恩尼斯关系9 C+ b7 s8 e! `# }4 g
Assessing fit, 拟合的评估
# ?) I7 [- ^5 S' p( BAssociative laws, 结合律. |) l; I2 l( s* b4 {
Asymmetric distribution, 非对称分布8 }9 [5 h3 s+ _6 j- o m
Asymptotic bias, 渐近偏倚
% o/ o% D" |% S4 z+ RAsymptotic efficiency, 渐近效率
5 A( @% g. A( \! P& qAsymptotic variance, 渐近方差
: C# u0 i8 w1 }Attributable risk, 归因危险度. ]( Y1 u. |% E: ], O0 D: c
Attribute data, 属性资料) h6 ]7 @; N/ s
Attribution, 属性
9 d- i7 T6 Y7 Z; IAutocorrelation, 自相关
% k' x& D' [* O& ?& `1 h: K/ e' P+ wAutocorrelation of residuals, 残差的自相关1 n) y( g( L+ \3 n2 ~4 Q
Average, 平均数+ W2 ?# s: t) b2 {1 K- e- N
Average confidence interval length, 平均置信区间长度
6 y5 ^( {5 y* w* jAverage growth rate, 平均增长率( g! W& K- t: [
Bar chart, 条形图
9 r: h0 a4 [% S iBar graph, 条形图( r( p5 _5 M5 Q( U
Base period, 基期
- w7 i2 N$ e/ q! ?6 p2 {' e: ABayes' theorem , Bayes定理
5 o# H0 r# P8 }6 e$ e$ u' ^1 vBell-shaped curve, 钟形曲线
( n' O, T2 {4 zBernoulli distribution, 伯努力分布9 @$ i- X4 h z- U- z
Best-trim estimator, 最好切尾估计量7 ^2 t9 G" `6 `0 w
Bias, 偏性
# S9 b* C; [; F, D( U) @Binary logistic regression, 二元逻辑斯蒂回归! D" G2 l' s6 M( [
Binomial distribution, 二项分布' F4 L$ Q$ z4 O9 n/ v! M* p8 y
Bisquare, 双平方/ E* N8 p, O9 A/ ~& g: Q
Bivariate Correlate, 二变量相关! J' i4 F8 z# Z" [
Bivariate normal distribution, 双变量正态分布
9 j/ Y' n2 ~; x9 L+ `Bivariate normal population, 双变量正态总体
0 K) ?0 J$ \0 L2 E7 @Biweight interval, 双权区间. t- c! a! n+ y4 ?" {
Biweight M-estimator, 双权M估计量
& R+ s7 E9 O! p2 Z& @0 d& jBlock, 区组/配伍组
* `( J, l# h7 I+ |% Y4 HBMDP(Biomedical computer programs), BMDP统计软件包5 F: j. ?( G7 L& K/ p% X$ E
Boxplots, 箱线图/箱尾图
" E/ n7 o8 K; p; H# C) F$ W! HBreakdown bound, 崩溃界/崩溃点
1 R8 g* ~9 J/ U ]7 ^7 ]Canonical correlation, 典型相关
' ^, E: d" m: i) A2 |. O/ YCaption, 纵标目
3 \( Q$ _# N: [( F( o$ R; I$ C+ ECase-control study, 病例对照研究# w6 a8 y* k F8 t
Categorical variable, 分类变量
9 q m! X+ @" I% O" u6 c- XCatenary, 悬链线8 U9 U( g& P4 k- Z% g3 }5 Y9 ~, Z
Cauchy distribution, 柯西分布
* r Z O8 I. v9 \Cause-and-effect relationship, 因果关系- H& A! K7 `4 `# G$ a3 N
Cell, 单元/ w0 m5 D6 D; p
Censoring, 终检
* x- n9 A( @/ Z2 N6 f% N1 a& ACenter of symmetry, 对称中心% @+ y$ b# z! }9 D5 ^
Centering and scaling, 中心化和定标
- @6 P0 n. ?+ y3 H2 rCentral tendency, 集中趋势, B" t/ C- U$ O5 @+ {
Central value, 中心值' q. b+ T; _) H# r2 u
CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测
, k! O- o! {, I5 n$ b- g' EChance, 机遇
% X2 ?! u2 }; ~* QChance error, 随机误差
3 Q6 c) l: T) a3 a2 `& RChance variable, 随机变量
: Q0 c ]! X2 O4 P; Z1 g' n7 rCharacteristic equation, 特征方程
0 d$ ]' a' w" z8 P4 b' @Characteristic root, 特征根
4 R. m0 u# K0 e' b6 v. `( TCharacteristic vector, 特征向量
5 K( ?( a2 R. @7 VChebshev criterion of fit, 拟合的切比雪夫准则
( k% j, d+ |% l9 ?Chernoff faces, 切尔诺夫脸谱图
6 h* o, M) S' DChi-square test, 卡方检验/χ2检验
1 t% I, g9 c8 u9 L- w: ]' mCholeskey decomposition, 乔洛斯基分解
7 g, H8 T- q3 r# l9 kCircle chart, 圆图 5 Q, ]% b) m% e/ d2 h
Class interval, 组距! i; F& i8 Y) w& T: y* t( V
Class mid-value, 组中值
; B Z7 P+ W( h$ n% P0 LClass upper limit, 组上限; ~7 W) }7 ?) _& H0 q( z
Classified variable, 分类变量
" H5 d* q4 N, p, k! kCluster analysis, 聚类分析" E; _! t1 B v2 o, [5 R
Cluster sampling, 整群抽样+ h7 f+ Y9 t2 v M' G2 B
Code, 代码
& I9 D$ l4 L8 j/ ?# K; sCoded data, 编码数据
0 `6 L5 d& k1 b# g( OCoding, 编码
: h& }& g. J- S$ a/ B9 k# x& gCoefficient of contingency, 列联系数+ `! k6 ~& Q7 h. \6 h! h( q
Coefficient of determination, 决定系数
% v1 k, {* d$ y% } S: f. \* ~+ L5 a1 SCoefficient of multiple correlation, 多重相关系数1 A! F( i- g1 q$ t# B% W! j. `2 v
Coefficient of partial correlation, 偏相关系数/ U1 w: k& U! G9 i, F
Coefficient of production-moment correlation, 积差相关系数! n+ T. Y* W2 p7 i$ E# k
Coefficient of rank correlation, 等级相关系数
$ V7 L h8 p% T, R# ?- kCoefficient of regression, 回归系数9 e9 U [6 e3 J5 S
Coefficient of skewness, 偏度系数# b: G! e+ x+ H' Z
Coefficient of variation, 变异系数% r: V# n c' h
Cohort study, 队列研究# G6 p7 r* P, r" t. u: q5 F- R
Column, 列
$ i2 e V1 ~# p9 o" NColumn effect, 列效应% R/ d5 n2 w0 H; k8 d- |
Column factor, 列因素$ S/ L8 l4 ]% M% d* D
Combination pool, 合并- I* q' p ^# \' k
Combinative table, 组合表
0 O4 }- i7 R v- v# z7 Z, ] S, \, t) SCommon factor, 共性因子
3 R4 y3 s4 x1 m, V3 D2 t! sCommon regression coefficient, 公共回归系数6 d* R; L8 r8 f9 R' a0 `
Common value, 共同值& R6 a+ J8 Z; f. l/ z0 y
Common variance, 公共方差) i. U! Y' A$ E- l+ q0 g
Common variation, 公共变异& f4 z4 ?$ ~) i% R3 P* S) c
Communality variance, 共性方差
! }/ g, ]% r8 b2 P# @Comparability, 可比性
* O/ K" w7 _, J0 @# _Comparison of bathes, 批比较
3 e4 P4 G. ?# }7 ~6 V) n3 EComparison value, 比较值
( F! s1 S& |7 M9 w1 S7 e0 cCompartment model, 分部模型
! B, ?% i, p4 o& r4 p7 [Compassion, 伸缩
2 Q+ e4 ~% B, E+ M* S& Z% gComplement of an event, 补事件
; X5 ^2 s5 E6 sComplete association, 完全正相关
) P* Z5 E! a* z# u2 AComplete dissociation, 完全不相关
* I- m6 l. B" D4 \Complete statistics, 完备统计量
3 V# m- V- [. n$ Q- `1 R! cCompletely randomized design, 完全随机化设计6 s6 J* W6 G% D+ S, N/ I
Composite event, 联合事件" \9 k5 h' `: s- z: j3 _7 m
Composite events, 复合事件
$ Y" d" Z8 z; iConcavity, 凹性
3 n" c7 J3 B1 ?, @5 SConditional expectation, 条件期望
$ |8 Y3 {0 b* uConditional likelihood, 条件似然
7 r) G! ]1 `4 LConditional probability, 条件概率
# W0 B" q5 |. U. DConditionally linear, 依条件线性: Z7 }8 C% x( i# g$ D' V
Confidence interval, 置信区间
4 B* f1 I) A1 c8 f, s! S, e1 \Confidence limit, 置信限
2 _! n# Y) {9 L3 M/ P# d! q: q: |5 H0 oConfidence lower limit, 置信下限
" x5 l3 S1 o* _) x( z) jConfidence upper limit, 置信上限
& b& J3 f8 u& V& w! UConfirmatory Factor Analysis , 验证性因子分析0 m$ t% S3 R. T0 s5 ?# n# ?
Confirmatory research, 证实性实验研究, ~7 {) v. Z7 E
Confounding factor, 混杂因素
/ h% @4 G: P8 y, i# IConjoint, 联合分析
; m H2 R" ^0 X( CConsistency, 相合性) T2 I# O! c+ m) T% t1 y r- {5 s
Consistency check, 一致性检验9 [1 \) Y i# p% ]$ z9 X
Consistent asymptotically normal estimate, 相合渐近正态估计# T- G" ^* D+ [5 v8 v
Consistent estimate, 相合估计" z0 d0 H7 `; Q. s- {
Constrained nonlinear regression, 受约束非线性回归
5 Q9 X: R+ N7 D" A( F) [ kConstraint, 约束
+ V; Z1 q8 @6 N! |Contaminated distribution, 污染分布
, S$ C& ^; |/ [" GContaminated Gausssian, 污染高斯分布6 t; X" z; l& z) V2 o0 j
Contaminated normal distribution, 污染正态分布
' t3 B; C: J) I$ JContamination, 污染
. x" @% L8 z# ~$ QContamination model, 污染模型6 w# T. t( s1 l6 q
Contingency table, 列联表/ v1 p1 I6 `( c2 {( Q; ]2 u v
Contour, 边界线+ l) q/ G. b W A, B* B
Contribution rate, 贡献率
3 J9 Y9 j, w( d# R& {6 P% O, a- s) HControl, 对照
0 d0 g3 w1 I; N& K; |Controlled experiments, 对照实验
7 ~: r. v1 |6 N4 ?; x- R0 {! KConventional depth, 常规深度
6 K/ D& i S5 J% W0 u& a0 c# z$ E( zConvolution, 卷积
' P7 _; u" W, ~) ], h! S$ s# S+ y mCorrected factor, 校正因子8 k% H1 H2 p- w! i6 Y
Corrected mean, 校正均值4 u- y/ r9 t9 q' n. {4 }1 u* f
Correction coefficient, 校正系数
: Z8 w7 C9 Q& E F$ W$ SCorrectness, 正确性9 }6 z2 A& v# H1 A- X
Correlation coefficient, 相关系数' r% F) f2 t/ A7 `5 B2 V7 H
Correlation index, 相关指数
* [6 y- r$ l0 W4 z" GCorrespondence, 对应
7 Q. ~+ ~) D% |, u. hCounting, 计数
0 E2 e) c: i: R# TCounts, 计数/频数. Q4 {: X) S, z1 X3 L( m) P
Covariance, 协方差
2 E) w7 O7 Q- I1 eCovariant, 共变
/ ^3 X- ]% G7 I7 S, vCox Regression, Cox回归/ M4 o4 ]3 |0 I& N5 ]* P! c
Criteria for fitting, 拟合准则: s- n4 W0 a3 r/ B
Criteria of least squares, 最小二乘准则2 k7 Y( b- Z- B0 i$ A! [$ ^( A
Critical ratio, 临界比& i9 c& v ^- N" P
Critical region, 拒绝域
) N6 ]. n' r3 `; s6 K$ c0 S+ ^Critical value, 临界值
3 q& h# ]* e( lCross-over design, 交叉设计' Z, w$ N7 h* P; ?
Cross-section analysis, 横断面分析$ r3 H; o5 H8 H
Cross-section survey, 横断面调查
* p' F0 U6 t6 TCrosstabs , 交叉表 " h4 L v- l* I) R$ `7 O! i5 v- Q
Cross-tabulation table, 复合表
4 V6 l5 }% b" d& i; ^8 y: `; aCube root, 立方根7 a+ T2 @7 X: t1 L! }' y" N" g
Cumulative distribution function, 分布函数
3 N9 w: M( z. D* z$ bCumulative probability, 累计概率+ c7 k& ~, f+ u% u$ ~
Curvature, 曲率/弯曲' a4 \7 T5 b- L7 Q8 r
Curvature, 曲率8 D+ i" G9 _* O4 i3 e: X
Curve fit , 曲线拟和 3 y6 z# N2 I$ B4 p2 F
Curve fitting, 曲线拟合
1 F8 j. d. m! h" m3 [% R2 mCurvilinear regression, 曲线回归% r' J- I, }' B+ R
Curvilinear relation, 曲线关系3 V! n& R' j( ~$ f
Cut-and-try method, 尝试法" T# \5 P$ {+ L$ t7 H" d* t! n
Cycle, 周期
% y- P4 s* @# N9 \4 r! CCyclist, 周期性" m; \) i/ M+ n. r/ G P9 g
D test, D检验. J: E4 u! }3 t6 l- |$ d
Data acquisition, 资料收集
' R+ W' c/ t( T9 n& L( Z m# FData bank, 数据库
6 d; J: [% ~4 K0 A$ `2 j$ U/ yData capacity, 数据容量9 ?6 k) B9 n9 H$ c( P6 c( v5 U
Data deficiencies, 数据缺乏
0 m% o$ X. n% i- ~Data handling, 数据处理
! ?7 V5 J+ B6 a. Y: a8 GData manipulation, 数据处理; M' K! {# z; O9 q4 v' [) r
Data processing, 数据处理
. `( A& I" X) |+ o: eData reduction, 数据缩减) L$ c/ Z$ ]# N
Data set, 数据集3 y4 ~& A. A' ]6 q, h2 M
Data sources, 数据来源6 t! U, b: G9 ?& ?0 x
Data transformation, 数据变换
E) j' q. `' O A3 h: d" P4 KData validity, 数据有效性
2 D7 I* Q6 a1 l* kData-in, 数据输入
u, H% a& x" i( w( nData-out, 数据输出
( T6 i# D& t5 f; e& T3 I' [Dead time, 停滞期/ U z- ^: W- M
Degree of freedom, 自由度& j6 x% y0 o0 e6 \$ N A# l" h
Degree of precision, 精密度2 C5 r% P/ B5 P2 W3 g1 W- V, x6 x8 U
Degree of reliability, 可靠性程度
2 U# K$ D8 Y }1 X. d( qDegression, 递减
4 c4 j9 x6 X8 O& oDensity function, 密度函数
* X5 i1 U' {; P9 c: |8 lDensity of data points, 数据点的密度
5 u( W% m5 S0 c) R9 tDependent variable, 应变量/依变量/因变量
L8 x ^$ w- P2 ?Dependent variable, 因变量
/ K- y9 S7 ^; v. ~2 s# l: H% _6 eDepth, 深度9 g" l3 s+ A& ]4 W: T
Derivative matrix, 导数矩阵3 h/ K5 `" @4 R3 @
Derivative-free methods, 无导数方法2 c: c! r g1 D* }! o6 |
Design, 设计
6 N; \; o3 ?6 k% V4 SDeterminacy, 确定性2 d" u7 t; k) u$ f" K
Determinant, 行列式3 @" ], S: y3 O) ~
Determinant, 决定因素
" r. p4 m4 B7 W* k* _: RDeviation, 离差
. w5 E" o7 M+ z( f0 z3 }4 E. X) |Deviation from average, 离均差6 H3 {2 j Q& g% M
Diagnostic plot, 诊断图* k" W& h4 C1 ^8 Y+ U* o
Dichotomous variable, 二分变量
* u, F* @" s' O) d& SDifferential equation, 微分方程2 l1 C7 j5 A6 d4 @9 A% b
Direct standardization, 直接标准化法( d) F& ?" p( G
Discrete variable, 离散型变量
5 m3 x- a; a; C( L, U3 t4 XDISCRIMINANT, 判断 ! D3 K- y% T: D3 J! N" S
Discriminant analysis, 判别分析
" H9 ]) K [+ e4 ODiscriminant coefficient, 判别系数
% D$ g, }' u; U3 j- q' o/ uDiscriminant function, 判别值
6 U& I4 J! S, g& kDispersion, 散布/分散度
8 _: q% K1 s2 v5 |4 d$ |( vDisproportional, 不成比例的
$ G. C7 @: i" Z0 _2 GDisproportionate sub-class numbers, 不成比例次级组含量6 S y. z8 [% W) m, ^# O6 S( O
Distribution free, 分布无关性/免分布* C+ l0 |8 J9 G4 R+ t- r+ G
Distribution shape, 分布形状 s( G, o- l* P, z. g
Distribution-free method, 任意分布法3 u! _/ Q% K& J4 T" I& r* c" T( [
Distributive laws, 分配律
& [* V: e1 z/ F4 L! }+ J% B5 I* ^Disturbance, 随机扰动项
/ i! D0 i5 e! s1 j! W! ]$ N! M8 ~5 l- XDose response curve, 剂量反应曲线- ~+ Q) k6 B( A4 B2 _& B1 V
Double blind method, 双盲法
6 R, `7 F5 E& T1 Y" G) [! s) S, VDouble blind trial, 双盲试验
# O- l" h" i) MDouble exponential distribution, 双指数分布
" ~/ f c$ G* O& R. ODouble logarithmic, 双对数
5 }2 e- ~( Z* I9 BDownward rank, 降秩
- ?. ^+ ] \' Q0 \Dual-space plot, 对偶空间图
+ O* Z' d& `1 j# s4 T# b( NDUD, 无导数方法
5 \# @( [; Q; p2 _5 c" _$ Z) FDuncan's new multiple range method, 新复极差法/Duncan新法3 h( L. B% F1 C r$ a% C- S
Effect, 实验效应
) e r6 |3 o& P+ A% |Eigenvalue, 特征值2 r2 }# ]" q" f2 M
Eigenvector, 特征向量, Z4 p: R, @4 E
Ellipse, 椭圆
9 P) X2 T# x; J+ Z- |Empirical distribution, 经验分布# w# F2 A9 W8 Q, z; i% Z
Empirical probability, 经验概率单位
- T, \9 l* i I+ FEnumeration data, 计数资料2 ]: f o. O/ u
Equal sun-class number, 相等次级组含量
% O$ L2 n. n' }' y8 k Q, eEqually likely, 等可能+ D# A$ f$ r) p' d% y7 k/ @8 U. B4 M2 X$ p
Equivariance, 同变性7 t. w4 Z" R. f( D
Error, 误差/错误
* t p0 X- j0 j& t$ y" iError of estimate, 估计误差
/ x( N) t! {' `6 nError type I, 第一类错误* a3 L) m* {+ Q( D, f4 P
Error type II, 第二类错误
& W! D& T: `! X, W: }6 H bEstimand, 被估量
$ \& J% T% H3 z! P- uEstimated error mean squares, 估计误差均方
( c. _* g& q1 e- TEstimated error sum of squares, 估计误差平方和! N" n9 k5 i. @
Euclidean distance, 欧式距离
& Y% z: u! R: G2 [0 {) d) m( I; |9 EEvent, 事件
- j0 B7 b2 \% n( WEvent, 事件
5 }, {" D9 r+ d: O" SExceptional data point, 异常数据点& g7 l7 \* O& V( W1 g( I0 L- ^
Expectation plane, 期望平面
/ H: ]0 L' q* u: q; r oExpectation surface, 期望曲面, \- b; w: c, I) v. l& J% L; @8 A
Expected values, 期望值
! v! ^4 g1 N% S; H) f& O/ d+ aExperiment, 实验
2 c" w; Q R: C" \Experimental sampling, 试验抽样
6 r( ]3 @9 S7 LExperimental unit, 试验单位
- l1 _9 z$ u# {/ @5 \! JExplanatory variable, 说明变量/ m/ v) {' m2 l& n6 f0 \& Q% k
Exploratory data analysis, 探索性数据分析3 d0 _2 d" L9 S- \) F
Explore Summarize, 探索-摘要2 {' V+ s3 V. {6 F
Exponential curve, 指数曲线$ `- M$ l2 L- C8 B
Exponential growth, 指数式增长/ u' P0 O2 ~5 G: E% l4 }, i
EXSMOOTH, 指数平滑方法 0 X; q9 z% Q, o
Extended fit, 扩充拟合
3 ?- G1 V' U* `# ~4 D( nExtra parameter, 附加参数& A8 U) W3 Q1 h+ U! k( j% M
Extrapolation, 外推法& V. R! e& o {3 S5 u. g1 x
Extreme observation, 末端观测值
& z$ p7 k0 G; ~2 \# A6 f5 ~, X+ nExtremes, 极端值/极值+ T4 h. I$ Q6 C/ ~. q4 W
F distribution, F分布! d; X& O6 t) s6 s6 i0 J3 Q7 f/ m
F test, F检验
: C$ D$ x* d0 _2 l2 X2 `4 V5 GFactor, 因素/因子
/ z8 S3 M+ |! L# v/ SFactor analysis, 因子分析
+ X$ z$ b0 {1 ]/ zFactor Analysis, 因子分析- V K; K7 r% W% H
Factor score, 因子得分
9 Z- U* {+ I1 A( Z0 A6 i7 a7 d- IFactorial, 阶乘
7 h. g; M! [+ `+ n, y3 TFactorial design, 析因试验设计
" B) C& O4 A; J6 V0 }False negative, 假阴性
* Y$ q' h: i8 H8 L MFalse negative error, 假阴性错误( \' T- |: e. b8 t, w6 N. k
Family of distributions, 分布族1 G, y; U& v) \: U8 T6 z8 s) ]% T6 G
Family of estimators, 估计量族7 H3 a; a( Z* _# Q4 m+ C
Fanning, 扇面
1 X% T' U g& x' lFatality rate, 病死率
4 E3 o7 |- M. N' Z$ }1 C' {- W' DField investigation, 现场调查3 |# Z5 t& A6 }) M' |$ X2 Z
Field survey, 现场调查# \7 y( o! h" N: @
Finite population, 有限总体% J6 o- a ^# i) D; V% U3 ~4 }
Finite-sample, 有限样本
6 }$ d: |( i7 t" n# v+ fFirst derivative, 一阶导数
" {6 C, H4 `6 |First principal component, 第一主成分
" P5 F3 X( N; j0 b9 ZFirst quartile, 第一四分位数7 V! j3 J, t6 x) i' _$ S. @1 x, s- ^
Fisher information, 费雪信息量7 {) g3 L$ `# G1 R; n# D
Fitted value, 拟合值
# t( E3 }' |. M3 R" U6 k3 B- F1 MFitting a curve, 曲线拟合
2 g' K! ]+ }. }5 g( ~3 i. JFixed base, 定基# v6 g; O2 E4 i0 U: l9 U
Fluctuation, 随机起伏3 \9 S4 M6 ] O
Forecast, 预测
* W w- Z+ h+ W1 e: M" ]Four fold table, 四格表& @$ R4 ]/ E) v4 m
Fourth, 四分点
: `( j6 d# ~ A. X+ X4 sFraction blow, 左侧比率
; A9 i! v" |- e3 T8 |" N8 iFractional error, 相对误差
9 s" [7 R# e0 t5 eFrequency, 频率
0 j: u; a: `4 r8 A* n X, MFrequency polygon, 频数多边图
. h1 Y! |2 m- b* @- wFrontier point, 界限点: ]0 F F: s9 `9 L8 U+ H! j
Function relationship, 泛函关系
; W$ ~$ R; z7 b; A3 M9 E( fGamma distribution, 伽玛分布$ E2 B' D+ t3 b. `6 U; l
Gauss increment, 高斯增量
; k2 p6 M4 A; ?3 g5 uGaussian distribution, 高斯分布/正态分布
0 F& o& S( ]( g6 v0 A' X& I7 OGauss-Newton increment, 高斯-牛顿增量
+ M) e- Z2 u: x3 W) U$ t( g& b3 KGeneral census, 全面普查
+ l$ Y, m# x: Z7 uGENLOG (Generalized liner models), 广义线性模型 ' a6 B6 F& K) |
Geometric mean, 几何平均数, u; s& T- Y% `7 D2 ~3 h
Gini's mean difference, 基尼均差1 B1 @2 N- U2 K4 {* [& z
GLM (General liner models), 一般线性模型
9 w) F3 z1 m2 k$ x" U$ \Goodness of fit, 拟和优度/配合度
# b) P! U" s/ s% S/ L" zGradient of determinant, 行列式的梯度
, w& z$ R& h6 V+ R0 z6 } ?Graeco-Latin square, 希腊拉丁方/ o3 Z& ?1 [ @! O% K9 u
Grand mean, 总均值
U/ y. O. Z. X" a( DGross errors, 重大错误
7 F [0 w* N8 W) f2 S; LGross-error sensitivity, 大错敏感度0 J$ w( U+ T- _+ ?7 P
Group averages, 分组平均- ]7 p" ^1 |3 r+ N5 c
Grouped data, 分组资料2 w3 l! B1 Z5 x! x5 e
Guessed mean, 假定平均数
8 ^1 }, R; ]/ q0 i% v4 l2 DHalf-life, 半衰期) ~. v9 u: p, D5 t( a+ }
Hampel M-estimators, 汉佩尔M估计量/ Z$ j# Z: O# a) }2 x( r9 x( S+ r
Happenstance, 偶然事件
) U, v! s7 Q& Q3 }: n6 v KHarmonic mean, 调和均数1 k4 m, b0 ?& q* A& n
Hazard function, 风险均数
9 N$ Y& @' v2 t* Y9 t& gHazard rate, 风险率- w& v1 c* s" Q W: ]# M" n' v3 Z! w
Heading, 标目 |' O5 k( B/ ~9 L( v+ j
Heavy-tailed distribution, 重尾分布
$ \$ w d8 J6 {- R/ }* u& xHessian array, 海森立体阵2 c$ i% t' t. l$ |. `0 w
Heterogeneity, 不同质7 ^; n% W3 p% Z' z7 _& b
Heterogeneity of variance, 方差不齐
+ A: ?" P5 s( QHierarchical classification, 组内分组
0 @; z6 C2 i) \+ @$ rHierarchical clustering method, 系统聚类法
6 t9 o7 b; D: y* c3 a4 s& C5 m! ?4 tHigh-leverage point, 高杠杆率点, \2 `/ p C# l7 z
HILOGLINEAR, 多维列联表的层次对数线性模型
# R7 E- U; S* M, {: P# dHinge, 折叶点
8 D# p, b$ g1 THistogram, 直方图
1 ]0 B0 C0 l( E) V8 Q/ L r0 BHistorical cohort study, 历史性队列研究
3 Q, d! v+ `5 r/ `7 Z/ d. SHoles, 空洞
$ Q9 T6 d: ~' j' jHOMALS, 多重响应分析
2 U, t0 n# H$ P9 `* D8 n2 M( [9 @Homogeneity of variance, 方差齐性: ^9 W. O7 ?7 d9 e
Homogeneity test, 齐性检验
, u0 n+ N5 M4 ?' s1 D; yHuber M-estimators, 休伯M估计量& ^8 R# Y7 v/ l+ Y+ d6 d
Hyperbola, 双曲线
& v0 l/ N$ B" H4 m" ^" sHypothesis testing, 假设检验
% J. P6 r D1 b5 s: \1 mHypothetical universe, 假设总体" P/ A% L" t: B
Impossible event, 不可能事件1 D" S/ W+ J# R7 }" m5 ]7 Q" Y
Independence, 独立性
1 o9 A3 j3 \/ O( V; D$ O5 IIndependent variable, 自变量3 O9 N/ j+ t; ?3 @2 ^
Index, 指标/指数! V+ N# n( ?: Y: z, Z7 U
Indirect standardization, 间接标准化法+ r' m% |& e; U, R4 I' Z2 k. m
Individual, 个体4 _' D8 S: {5 v; ]
Inference band, 推断带+ R+ e( r' f0 [6 x6 N
Infinite population, 无限总体% \- _( Y' M% v& u
Infinitely great, 无穷大( }" ]7 s- P& c* s2 |8 ^. A
Infinitely small, 无穷小' A) `5 Q7 d$ a4 o* B _
Influence curve, 影响曲线0 E8 e/ d+ {; v5 ?3 C0 P
Information capacity, 信息容量' E9 s, o# q4 i0 v8 ~
Initial condition, 初始条件
( v% `/ E, y3 P r N Z: O, VInitial estimate, 初始估计值
/ [ w! U! D) B! D. n' b \* |0 _: jInitial level, 最初水平
( O& q" D y5 V9 jInteraction, 交互作用" M) ]2 B% O( k4 e' i) z) l
Interaction terms, 交互作用项
. f1 z7 r! m4 T6 x1 z! S" ]Intercept, 截距) N7 \& f8 ?0 \3 M4 A
Interpolation, 内插法
, T2 n( l, F& A. }9 e: D: TInterquartile range, 四分位距* e6 u4 B6 q v5 k6 g
Interval estimation, 区间估计& a! G6 h1 z6 M5 M7 a2 ^7 a
Intervals of equal probability, 等概率区间
( z3 x# s! { B9 e3 a' sIntrinsic curvature, 固有曲率
+ j/ T4 [# h. }: F9 z2 cInvariance, 不变性
) @$ x6 C9 R ^% d. ~1 ZInverse matrix, 逆矩阵! j% C$ i$ C- Y: H0 I
Inverse probability, 逆概率# h. G1 A2 G# h6 @
Inverse sine transformation, 反正弦变换
" K9 Q$ i& Y p- lIteration, 迭代 + J3 ~, A9 U4 }$ c
Jacobian determinant, 雅可比行列式. l5 X- N+ V! |$ g8 p" u
Joint distribution function, 分布函数
$ q* Y1 }' z3 ^. H; G8 k9 a/ ~Joint probability, 联合概率9 U& h& {- W, a; h: Q
Joint probability distribution, 联合概率分布
6 P( L- i/ Z: FK means method, 逐步聚类法& @3 O, a" S G4 K/ Q5 F, M1 ]. b
Kaplan-Meier, 评估事件的时间长度 ) g0 N% q. ?0 P ~5 k1 l: j$ g5 n
Kaplan-Merier chart, Kaplan-Merier图8 N: j% R7 V7 y( I& z
Kendall's rank correlation, Kendall等级相关
9 e5 V' z) D, ^6 y! v) v4 d# QKinetic, 动力学
" i3 \5 D5 ?1 B6 I; WKolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验0 ~; J$ n5 q! t8 l6 ~. T+ Z R
Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验
; R/ g' ]# _; v9 a D/ |0 OKurtosis, 峰度
+ q H2 a/ e4 S7 Y0 y, t7 fLack of fit, 失拟
5 [8 R- J7 n2 I& Q8 ?" CLadder of powers, 幂阶梯
: g( | L4 F9 A `Lag, 滞后
0 e" Y% u) _9 O. {: W xLarge sample, 大样本
7 `, T0 ^# b& q7 O1 X) TLarge sample test, 大样本检验" D j# N- h0 K
Latin square, 拉丁方4 M2 A a; G4 C0 L+ F
Latin square design, 拉丁方设计
: T3 |+ _+ O+ A4 | ZLeakage, 泄漏
5 k. d7 u# Y2 B0 {+ W' A# \8 ULeast favorable configuration, 最不利构形
, m5 c+ T# o5 }Least favorable distribution, 最不利分布8 C$ Q+ f4 i5 }3 s! Q/ T! j
Least significant difference, 最小显著差法
) M' X1 I4 i; U& S" TLeast square method, 最小二乘法
# b! ]9 B* F2 ?# u4 hLeast-absolute-residuals estimates, 最小绝对残差估计) v& s2 n- y8 {" E$ c( Q. z9 s
Least-absolute-residuals fit, 最小绝对残差拟合
7 v% q: x& t5 A' dLeast-absolute-residuals line, 最小绝对残差线0 I+ Q+ x" q* o5 V
Legend, 图例
. V1 o1 G5 _) WL-estimator, L估计量& y8 p1 @. I5 l+ M3 J" }( t
L-estimator of location, 位置L估计量, k; x( M1 W, t$ q8 C" U* y
L-estimator of scale, 尺度L估计量
& {" P" T* @' e. oLevel, 水平
7 @5 `; b8 f: I% R Y% m, NLife expectance, 预期期望寿命
4 h1 {& q2 F& ]Life table, 寿命表
2 q; h: _" F, _! h' z, J! `+ CLife table method, 生命表法# a# V0 u: \0 J8 M7 @( T
Light-tailed distribution, 轻尾分布: }" Y' v* d. F0 [
Likelihood function, 似然函数
: N7 T9 ^( x$ N! ?( SLikelihood ratio, 似然比4 }6 c% W7 |! Q. p) a
line graph, 线图# w8 P- M& B* T6 O) ^
Linear correlation, 直线相关
9 ?! O% Q5 l- i2 F2 I. TLinear equation, 线性方程 B0 C$ }6 Q8 G8 J5 R7 v
Linear programming, 线性规划
3 o% X: b( N! e3 A w$ FLinear regression, 直线回归" w5 a( H) U' A- ~
Linear Regression, 线性回归
0 W3 Q7 d! _' ]Linear trend, 线性趋势
- `, D: k; J( t2 G! X5 C, ALoading, 载荷
4 ~& A4 P" L4 Q- ]/ ALocation and scale equivariance, 位置尺度同变性
- n+ w0 I8 C% G% MLocation equivariance, 位置同变性
6 `, g. c# k9 h. ILocation invariance, 位置不变性6 g3 t k7 Q" ?" j7 _' U% e; ~0 G* H
Location scale family, 位置尺度族
+ ]1 U$ g" N# u* Q+ L0 W6 wLog rank test, 时序检验
' D m7 |6 k: u4 k; ELogarithmic curve, 对数曲线' T# q; r9 u$ X& ]7 }; k0 @: P/ x3 Z/ J
Logarithmic normal distribution, 对数正态分布
`. L& P5 b# y2 ^* E: eLogarithmic scale, 对数尺度) x9 {. D! d! J0 z' W" L8 ?3 a
Logarithmic transformation, 对数变换/ M4 K' ~1 K0 A) K0 U0 o
Logic check, 逻辑检查
7 ?5 \% }( P7 Y$ Z/ v& y( u m' KLogistic distribution, 逻辑斯特分布: u7 f6 v" G0 Q9 v& I+ V
Logit transformation, Logit转换# n2 f; }8 K# z3 E6 h
LOGLINEAR, 多维列联表通用模型 " F! C0 u8 F/ i: Q' {" o# }/ u- g
Lognormal distribution, 对数正态分布
& D( q6 h. f; h0 bLost function, 损失函数5 e" l# m5 N7 d( V
Low correlation, 低度相关$ H1 N# P6 U4 v* K
Lower limit, 下限/ O9 N6 t i2 r4 {* L9 q: i
Lowest-attained variance, 最小可达方差
* B- ^% z9 l6 [8 A! bLSD, 最小显著差法的简称
# U4 |( m2 v/ a. O/ E% RLurking variable, 潜在变量
- g$ a: u0 E; o6 eMain effect, 主效应
1 E( i0 z+ P* [+ m" UMajor heading, 主辞标目
7 ]6 f2 E! s4 pMarginal density function, 边缘密度函数
) y2 |9 t- U ^' Y* {, T( GMarginal probability, 边缘概率7 W$ I! j( e8 C ?
Marginal probability distribution, 边缘概率分布& b" n7 C, L' N( n
Matched data, 配对资料
- c R* _# ~! |9 KMatched distribution, 匹配过分布5 D# i+ K$ Q4 Y& u0 y
Matching of distribution, 分布的匹配
' T# l+ f' k( ]. K# o( iMatching of transformation, 变换的匹配
6 s) u- J7 q5 q! e; QMathematical expectation, 数学期望 D9 a- g; w. [. M( R8 G. d$ `# k3 u
Mathematical model, 数学模型7 @! i1 \+ h5 _3 B
Maximum L-estimator, 极大极小L 估计量, e; T" o2 ~2 g+ u
Maximum likelihood method, 最大似然法# a! K" |& f; c
Mean, 均数
6 W2 y0 g4 g1 ]* R) K" k: }Mean squares between groups, 组间均方$ a4 h$ q5 \; N
Mean squares within group, 组内均方, m1 g; ^# }8 x# O% H
Means (Compare means), 均值-均值比较
# N5 s8 U3 D. t5 y: L% r8 G) VMedian, 中位数
, ^# d' h# N, N# hMedian effective dose, 半数效量/ q1 K) {) ^ g
Median lethal dose, 半数致死量
! ]; {; g: |5 l( }Median polish, 中位数平滑
3 T6 F$ R/ m! u- ~! D5 y/ Y* w& \Median test, 中位数检验
+ s$ S8 {% L9 h1 |3 BMinimal sufficient statistic, 最小充分统计量: O$ q+ n( V: _& ~& z
Minimum distance estimation, 最小距离估计
: _- Y2 }: S6 m2 x: V" KMinimum effective dose, 最小有效量$ I- ]/ I8 V/ X: n
Minimum lethal dose, 最小致死量
' I$ k$ k# T; ]7 U$ Q& XMinimum variance estimator, 最小方差估计量4 X1 A; H+ \/ W( u. \# d% C% |: u' D
MINITAB, 统计软件包
9 Q3 f9 A, J3 ?. z- ^& eMinor heading, 宾词标目
+ m- ]0 K; d: e& ?" C1 o: h+ `Missing data, 缺失值
8 j- k A3 p, A, r i8 N* vModel specification, 模型的确定% v. [. U+ S2 z) b" p
Modeling Statistics , 模型统计) v- A& i! o% w, F
Models for outliers, 离群值模型
' A3 L& `7 U' R+ iModifying the model, 模型的修正
$ R% l( q5 E% a1 y1 R" |Modulus of continuity, 连续性模
& h4 R K. x( VMorbidity, 发病率 5 x6 _# U/ x8 M: `& }% [5 ]% A
Most favorable configuration, 最有利构形
- g$ R2 _& B3 z, w+ Y" N& xMultidimensional Scaling (ASCAL), 多维尺度/多维标度/ N' _4 L5 m6 i0 I1 U- b( c5 ^ r
Multinomial Logistic Regression , 多项逻辑斯蒂回归
6 K" w8 K* O+ R7 D dMultiple comparison, 多重比较+ ^+ y8 I- Z# S \1 q& h
Multiple correlation , 复相关
- O6 }0 L, R! i m; v9 fMultiple covariance, 多元协方差
* E. S+ M3 C& }* n- m, M; CMultiple linear regression, 多元线性回归
; Z- Z8 q% r5 a8 J1 z( rMultiple response , 多重选项
4 I$ _1 j7 C3 E4 AMultiple solutions, 多解9 ~" \- C1 S& m; m3 S
Multiplication theorem, 乘法定理! [! Q- S3 ?2 x) I7 a% T
Multiresponse, 多元响应
4 K9 [6 N* g, C$ }& |, y; UMulti-stage sampling, 多阶段抽样( Y) F8 }# _8 F+ X
Multivariate T distribution, 多元T分布# R) D0 w* f, b& F: S6 t# S
Mutual exclusive, 互不相容
2 `+ v0 Q1 R7 K. D% {Mutual independence, 互相独立) s1 b7 h J% o' B1 o
Natural boundary, 自然边界5 l4 A/ l0 |' b- F) W
Natural dead, 自然死亡
: i W8 Q% {. j. ]7 k1 sNatural zero, 自然零
% k* D8 ^( t* NNegative correlation, 负相关. s/ j5 }- x% f
Negative linear correlation, 负线性相关5 g2 z( ^( e, q( G
Negatively skewed, 负偏0 y( |0 c9 x( I/ H+ i
Newman-Keuls method, q检验
: _# O+ F0 q) q6 x m: {NK method, q检验( k- |5 H' r4 ~' X. S$ k. P
No statistical significance, 无统计意义
6 h' \1 N6 @( u M2 ]3 gNominal variable, 名义变量2 j. A! o7 q( u# | t* m
Nonconstancy of variability, 变异的非定常性
1 Z) ?- M: b m+ P# b+ s9 J- _" `Nonlinear regression, 非线性相关
$ s% i" I5 W! T9 y- hNonparametric statistics, 非参数统计
8 j) b r, F: n$ J+ U, lNonparametric test, 非参数检验
8 j# _' M" s: W M JNonparametric tests, 非参数检验2 O/ }( F) I2 z' I E1 C, `: m1 S
Normal deviate, 正态离差6 M3 B T( T- z* {
Normal distribution, 正态分布' n$ ~. [/ _0 m+ N: A& c6 H
Normal equation, 正规方程组" ^! t3 }4 J8 v0 A* K2 v( ?
Normal ranges, 正常范围! @6 c( q, V& U5 |/ I
Normal value, 正常值
1 a7 Y$ t( A3 c4 h& UNuisance parameter, 多余参数/讨厌参数
* [- @* }0 i. I a* |4 c; qNull hypothesis, 无效假设 / F# {- S" }" `% b/ o
Numerical variable, 数值变量% s+ \4 F9 [" a" I0 F" p: {. F0 x
Objective function, 目标函数( [- J# s# N$ b8 _# A, J
Observation unit, 观察单位
; i+ N! K- r+ f$ p- x. bObserved value, 观察值
; R( f L# G7 G& o. U3 FOne sided test, 单侧检验; u- u0 X; E4 `$ Y' D
One-way analysis of variance, 单因素方差分析
$ P% N. y7 K! y* V- ~) m- @ eOneway ANOVA , 单因素方差分析 D- d- M5 Y: ~8 T! L7 j. z$ [
Open sequential trial, 开放型序贯设计! s6 ~3 j- \9 y5 L
Optrim, 优切尾 i* l I) S' i+ K- r* x# f- a
Optrim efficiency, 优切尾效率5 Q+ U, o/ C, E& z( n/ k8 {2 r
Order statistics, 顺序统计量
2 `+ I2 b' f- L' d0 w; j: K. _7 ~Ordered categories, 有序分类
0 ~0 b1 N( R1 S4 H$ c9 \5 DOrdinal logistic regression , 序数逻辑斯蒂回归
; o* @3 T% P$ i! B2 ]- X4 ^Ordinal variable, 有序变量+ F( n1 G/ s9 c* L" t5 _
Orthogonal basis, 正交基: b) P2 B! N. ]; F& R+ o8 q
Orthogonal design, 正交试验设计
F4 c6 ?/ b- D- O6 b" oOrthogonality conditions, 正交条件
, L) o9 y; o- b4 [ORTHOPLAN, 正交设计
; @. D( z) X/ ?4 h! Z0 S0 R4 NOutlier cutoffs, 离群值截断点* |5 @9 ^' j' i2 N6 M4 _, i/ L
Outliers, 极端值- D* T; w8 q/ I; |1 ?. {; @8 g
OVERALS , 多组变量的非线性正规相关 & g/ W9 @! @9 M7 b! i* _
Overshoot, 迭代过度6 H' F9 R) k5 e( n; W( o- Q8 l. b) z3 w
Paired design, 配对设计& e: k! Z- b9 L) e$ L! q
Paired sample, 配对样本* ]0 F2 |) `6 n6 @. i d
Pairwise slopes, 成对斜率3 I5 k6 A2 k% r# J9 Z
Parabola, 抛物线" o# s) c0 ?, i( P7 m0 s: h4 U1 x9 A
Parallel tests, 平行试验
' O/ F* F* C7 V/ CParameter, 参数# J) l# h6 _ o( E
Parametric statistics, 参数统计
+ a7 o0 ]. A6 D7 dParametric test, 参数检验
& C) r3 _& I0 W% p. Z) q7 nPartial correlation, 偏相关
4 F6 P2 ^* l- p2 e7 kPartial regression, 偏回归( r& `6 [( d6 g$ T- a' h1 d' t5 |
Partial sorting, 偏排序6 y/ c, t& _# ] o. p
Partials residuals, 偏残差) C; {% u# Z$ @% d. P; c: A
Pattern, 模式
7 v X/ b( g3 m, DPearson curves, 皮尔逊曲线; q& S- K% }* w& A
Peeling, 退层2 J8 ?" G" q+ ~" s
Percent bar graph, 百分条形图- B" I" a s% o P7 C0 _" Q* _
Percentage, 百分比# F' B2 T* l2 t+ L* ]5 [3 I
Percentile, 百分位数2 P3 g; Y& U1 a
Percentile curves, 百分位曲线
" f. w. g5 M( w/ q# HPeriodicity, 周期性/ g. |, F. g$ Z
Permutation, 排列
' P$ v3 o5 D0 {3 O$ ~. KP-estimator, P估计量
% X/ y1 q; g4 C. ]3 ^& r1 b% cPie graph, 饼图% y' D$ R; p5 Q% R% I& f& k1 S
Pitman estimator, 皮特曼估计量
7 |8 \/ b& m' _0 q- |# u) jPivot, 枢轴量
0 Q& E* S: h5 T$ m+ T6 XPlanar, 平坦
3 o# f- e2 T/ z- o1 C2 XPlanar assumption, 平面的假设
9 b6 N/ S% R0 l0 U W8 C" z+ D+ o4 QPLANCARDS, 生成试验的计划卡
! `. q5 q3 {1 R+ u! P: c) dPoint estimation, 点估计
+ q5 a0 o) i+ _0 dPoisson distribution, 泊松分布
& G" V, m) m$ `) ZPolishing, 平滑
# k- W$ W' `/ s* r% qPolled standard deviation, 合并标准差6 g6 e& k% {( S6 {- ^# Q
Polled variance, 合并方差
2 x* ` E n- }6 @% V2 E( PPolygon, 多边图' ~# m0 e: X& t- [9 L
Polynomial, 多项式
8 E5 L" c5 _2 f4 r) T& x8 o8 r; d9 iPolynomial curve, 多项式曲线% I$ K) O' D/ R1 a" t# o, r( {& `6 F( w
Population, 总体, p2 Q7 S: g& Z" h& d
Population attributable risk, 人群归因危险度
& j5 s8 Z8 W6 T, o: [Positive correlation, 正相关
. N" Z) I6 N3 E% z* J* ~9 y- q" l& }7 RPositively skewed, 正偏8 N( i T4 M8 L3 M! a
Posterior distribution, 后验分布; B0 X( Y3 |' O8 H% T
Power of a test, 检验效能9 }8 H9 u2 J% W+ D( K, F4 W
Precision, 精密度
3 v2 l& q. Z% s+ F# n5 \) fPredicted value, 预测值
, u3 H) j, F6 @* V8 hPreliminary analysis, 预备性分析; e/ U- W7 V' l2 Q+ [$ D) u
Principal component analysis, 主成分分析
# ^- J, C$ i! B# @Prior distribution, 先验分布
/ q5 \6 Q4 u! b! m6 Q5 d2 CPrior probability, 先验概率
! k7 _2 \% Z( { y7 YProbabilistic model, 概率模型% i2 `6 V! ]+ Y! u' M$ L
probability, 概率
( ^6 j& ?8 y/ gProbability density, 概率密度
8 I( a& F7 L: Q; P. m3 E- X4 M. ZProduct moment, 乘积矩/协方差8 o* l! y% b% z; L7 |! H+ |
Profile trace, 截面迹图
# ~; w8 V7 V6 g( u; `6 w: m* L0 DProportion, 比/构成比
3 }7 {- H/ O6 [! M* k' q$ uProportion allocation in stratified random sampling, 按比例分层随机抽样: S1 {# m' b, ]1 E2 Z& H
Proportionate, 成比例+ t0 N# b- Y8 h2 z+ R0 l
Proportionate sub-class numbers, 成比例次级组含量2 }& U/ W2 `4 {" A
Prospective study, 前瞻性调查
! Y/ `6 ^0 |8 L2 V6 ?Proximities, 亲近性
: Y: f6 l0 `4 G& v2 ^+ b9 ?Pseudo F test, 近似F检验* A' b$ M1 }2 U' ]; s& [
Pseudo model, 近似模型; B% b& h) V0 M1 y. [
Pseudosigma, 伪标准差1 y/ O- n9 O2 B. Y% w( l' I
Purposive sampling, 有目的抽样
' w6 P" ^2 I: s; cQR decomposition, QR分解
' D. e i0 u: s1 U/ _Quadratic approximation, 二次近似 _- @( G( J* P4 M3 f& D; d
Qualitative classification, 属性分类7 X8 K1 l9 @: G3 H8 I4 l
Qualitative method, 定性方法
* l. w/ Q- V7 v7 G+ j! wQuantile-quantile plot, 分位数-分位数图/Q-Q图
1 }+ z# }* q9 y# D$ DQuantitative analysis, 定量分析
, U( _- ^3 ~% K0 B/ I9 fQuartile, 四分位数
. `0 Q# ?* Z1 i- g# P* aQuick Cluster, 快速聚类
' H' x$ L' p% V+ SRadix sort, 基数排序
* O+ t' g1 l2 A3 t$ s* I, G$ `! rRandom allocation, 随机化分组
7 I. A: m4 q8 y* I; zRandom blocks design, 随机区组设计1 o7 {* W( q3 h( R% b; P! u
Random event, 随机事件7 H, E8 d @' M: E8 z
Randomization, 随机化0 r0 M! J1 \8 m8 V. z' R
Range, 极差/全距$ w5 R% _/ F7 z0 U- h
Rank correlation, 等级相关
" N( d5 W- e/ ~9 m J0 J# lRank sum test, 秩和检验1 g& c& F+ q) o" R/ X& I% _
Rank test, 秩检验$ Q# n, ?/ t: ]1 J$ f
Ranked data, 等级资料
% N( v" ~8 C: H6 p' F4 TRate, 比率
& I1 V! L6 z' O/ ?9 pRatio, 比例
% x2 t6 u, B* WRaw data, 原始资料 M+ c& p1 z: _& B! Y
Raw residual, 原始残差7 b6 h5 y0 \& c8 H; Q
Rayleigh's test, 雷氏检验/ E% |7 @( _0 Z, H2 Z8 k
Rayleigh's Z, 雷氏Z值
6 ?* ^" q# Z$ j' N! D% Z$ HReciprocal, 倒数
$ m2 c: b7 D/ pReciprocal transformation, 倒数变换) L( }7 @& p8 v% ]- N8 V% u/ o* [/ `" k/ h
Recording, 记录$ \: k! [8 o+ _: W4 a* `" |
Redescending estimators, 回降估计量
) s5 i' f3 R. Z5 w' p! L5 dReducing dimensions, 降维
' r {& I' m0 Y8 Z4 \Re-expression, 重新表达5 v' J6 j8 h2 Z# c/ V; S: i
Reference set, 标准组9 C! o) S# U8 ~% x y
Region of acceptance, 接受域
2 l% e" l5 ?4 d2 ^8 x, D, NRegression coefficient, 回归系数
2 T$ b8 J- }1 s$ [9 S2 @/ N! g0 SRegression sum of square, 回归平方和5 M5 U( {% D5 W0 o
Rejection point, 拒绝点# x. u G1 }5 ]# x& f8 y: u
Relative dispersion, 相对离散度
/ H. ^9 g' \3 p* x* s9 F0 sRelative number, 相对数# B1 A8 `$ I$ R2 b m" o
Reliability, 可靠性
( ~6 x1 u6 Q3 {1 _, x$ v$ p5 l0 |3 dReparametrization, 重新设置参数
1 k; p* z! i! q2 E. \/ D8 b( LReplication, 重复1 B. L" I. \% K/ a! \' y
Report Summaries, 报告摘要
( R+ E+ P8 h/ x8 {% oResidual sum of square, 剩余平方和7 {; c } A9 `, [8 p1 f) }
Resistance, 耐抗性" f7 e/ D7 [3 }, @0 ^
Resistant line, 耐抗线
8 U: v- G3 Z8 s. P2 LResistant technique, 耐抗技术
/ S. s+ p+ ^9 x' D2 I2 A" Z2 IR-estimator of location, 位置R估计量( w. U6 k. `7 G4 H! ?% _; _
R-estimator of scale, 尺度R估计量
2 G6 @: r( r2 B$ Q# E+ vRetrospective study, 回顾性调查- Q% m, V/ U. K' n
Ridge trace, 岭迹9 O# o2 X6 X/ U- K( `$ I
Ridit analysis, Ridit分析
4 f2 q# ]2 q% P+ ~0 T2 N6 hRotation, 旋转6 n% }3 T8 E1 Q& O; {
Rounding, 舍入
6 @( q* Q' V7 n' \Row, 行
D! f ~1 m6 D. _& Y6 Z0 YRow effects, 行效应3 w1 ?( f, E8 T& d# X: c) r
Row factor, 行因素
( O" T1 j0 W S7 sRXC table, RXC表
- D8 T. s/ E# H0 u' \7 \Sample, 样本7 f/ U8 n% f5 |" q! F6 k; z
Sample regression coefficient, 样本回归系数
% U3 k+ F! m( p. }( j) y$ FSample size, 样本量
. I; ^9 ^2 s9 m/ LSample standard deviation, 样本标准差7 n! f% u9 { O3 F R, i" C
Sampling error, 抽样误差- z8 j" n# Q+ R. l! k7 j* a
SAS(Statistical analysis system ), SAS统计软件包! _, L1 D5 c4 r6 @( v* N w" ~
Scale, 尺度/量表
' l6 }2 ?* ]& G, P: a( _' K( A9 tScatter diagram, 散点图 e7 ?7 I7 `- X: e# J' z* r. N3 d
Schematic plot, 示意图/简图6 @' f B. j/ R# T/ B0 h
Score test, 计分检验
2 }5 y. ^$ U# T; ^3 CScreening, 筛检& A$ ^( M6 ?- q! G7 D
SEASON, 季节分析
3 d) R v. [$ X4 JSecond derivative, 二阶导数% H; d; t# f% u+ `
Second principal component, 第二主成分: K7 |8 @; i; z9 f5 g) t
SEM (Structural equation modeling), 结构化方程模型 " C4 V l) f4 v1 w) a7 x5 I8 A' z
Semi-logarithmic graph, 半对数图* K$ K) U4 R5 Q" S. |
Semi-logarithmic paper, 半对数格纸- I& v# ~+ i6 c. {& O
Sensitivity curve, 敏感度曲线1 |8 i- u$ o9 F% Q/ c8 {+ B; v
Sequential analysis, 贯序分析( ?# Y5 @' c6 X6 G3 W) W( J
Sequential data set, 顺序数据集
% Y4 B: \. y! j2 ~1 w$ r/ ^Sequential design, 贯序设计
& S( F" d& d- s" A: U2 h+ w" DSequential method, 贯序法
. T$ I' l3 B d& f9 eSequential test, 贯序检验法+ K: n! [1 I' A" R/ G: J' }2 Y
Serial tests, 系列试验 |2 P. ~4 b5 ^; a: ]( j
Short-cut method, 简捷法
n4 H7 F# ], a7 k% r8 K4 H6 S6 C8 {Sigmoid curve, S形曲线 ?. e$ |0 |" H8 c3 W& a
Sign function, 正负号函数
* o9 }7 s1 k+ R# {" R0 O: M7 Q- H! ?( LSign test, 符号检验
, e# W8 y' p7 Q+ b |Signed rank, 符号秩& g1 L' k( c4 K4 B8 C/ g1 Z
Significance test, 显著性检验+ u' J- ~6 [( [! v. D) d; q
Significant figure, 有效数字8 D. y9 A6 M0 ^ K
Simple cluster sampling, 简单整群抽样0 a$ t' F- u4 h: i5 }3 C7 J) G
Simple correlation, 简单相关4 _9 G$ D) ]( M* C5 x) I
Simple random sampling, 简单随机抽样
/ |. Y, ^ v& k" e5 nSimple regression, 简单回归
+ B0 { i, J5 X( J2 ? P7 T% S9 Qsimple table, 简单表
# A! f. g3 h2 q. O/ kSine estimator, 正弦估计量
( S7 \+ e. q" s- C6 ]2 {9 mSingle-valued estimate, 单值估计& ~0 ]6 n7 w! l6 s# ?$ W
Singular matrix, 奇异矩阵
: L3 m4 }& h; q- v0 i, L5 S! V$ dSkewed distribution, 偏斜分布
+ [. U3 i3 u pSkewness, 偏度2 a) F. _+ z- B; }$ ?& w
Slash distribution, 斜线分布( j3 K7 N5 w0 L9 I6 N) w
Slope, 斜率) \6 T; {1 u5 P7 h6 x) y( H
Smirnov test, 斯米尔诺夫检验
3 M9 a! v6 X- E9 w! z) \! L! y9 ~Source of variation, 变异来源. E, n3 D- W; l
Spearman rank correlation, 斯皮尔曼等级相关7 [! `6 [, m6 `6 r) X
Specific factor, 特殊因子- ?; g1 L3 B$ ~& G) z6 q3 D
Specific factor variance, 特殊因子方差! l# J, }7 ?; f& y) v
Spectra , 频谱
3 h4 U% j/ n% ~/ |8 \; @Spherical distribution, 球型正态分布
( C4 F5 ?+ a9 V! `+ M- p1 Z% PSpread, 展布( _7 U @" M: h |
SPSS(Statistical package for the social science), SPSS统计软件包
% l3 i: x& H; J3 T0 A# E TSpurious correlation, 假性相关# c& o" }2 _; C3 {6 J
Square root transformation, 平方根变换1 `# P( }, \# }3 u3 ^# k
Stabilizing variance, 稳定方差: k8 s2 N& w% |" g' e
Standard deviation, 标准差, E' X& w0 ?$ ?1 J+ T+ \1 E3 d- Q: x
Standard error, 标准误! }6 E0 x7 M. @. R% e9 B: p; ]3 m8 D
Standard error of difference, 差别的标准误
* Z& E/ ]+ e( X; P- Q5 L: c- V+ mStandard error of estimate, 标准估计误差, |; h7 `0 X1 v1 P6 B
Standard error of rate, 率的标准误( {/ r3 E6 j0 u7 D. Z" R
Standard normal distribution, 标准正态分布
. Y/ u- \9 X% r7 a8 F$ s+ x& JStandardization, 标准化" o( L6 r8 ~! [0 s) z& M7 H4 u
Starting value, 起始值
9 G. n9 } M% hStatistic, 统计量
# n# o) h' z% z0 J! \Statistical control, 统计控制5 L/ l, f7 N& |
Statistical graph, 统计图
. R% n: o2 c2 t& k6 ^; R& DStatistical inference, 统计推断7 O4 D4 x1 H0 z
Statistical table, 统计表
( w5 x5 i" B% y9 eSteepest descent, 最速下降法
) V9 b+ Y6 _/ u* k% N4 oStem and leaf display, 茎叶图0 P$ Q) p6 L4 w3 w+ @
Step factor, 步长因子
8 b' b. ] h g9 S5 H1 b0 W* tStepwise regression, 逐步回归% L$ Z! A! \( w& b3 t# Z
Storage, 存% Z% m, z! S- V" w: L- }' j
Strata, 层(复数)
0 w( J2 x0 }! l7 n$ D5 VStratified sampling, 分层抽样
) L6 `# _8 t0 l+ |Stratified sampling, 分层抽样+ h5 K! g) _9 D: c
Strength, 强度- [- C2 W. }% E8 W1 ~
Stringency, 严密性
& s- M" _6 P" [- r& }Structural relationship, 结构关系
% J) o& b F' S% J& NStudentized residual, 学生化残差/t化残差. [6 L+ e/ K8 ]8 M
Sub-class numbers, 次级组含量
$ Z4 B6 i0 j' I* e8 FSubdividing, 分割
/ z& r+ N& ~" P- r% ~. _4 T/ LSufficient statistic, 充分统计量
O0 n* c( v: YSum of products, 积和
9 I# d" ] P) |$ ESum of squares, 离差平方和
( e8 {7 x" q) f8 r; gSum of squares about regression, 回归平方和
y o+ y' x9 U5 [- N1 d0 _% ]Sum of squares between groups, 组间平方和& f/ V- n6 c7 J. b' r3 v" B- u) _* Q* B
Sum of squares of partial regression, 偏回归平方和
3 v, P6 F6 Z6 Y* X$ _Sure event, 必然事件
9 }7 O+ v$ V7 S0 lSurvey, 调查1 ]* ]& ?. v& W% y) K
Survival, 生存分析# ~" d9 G. ^# {- S) d/ }6 e) F
Survival rate, 生存率
: }/ L0 L! k' i N6 wSuspended root gram, 悬吊根图
! H3 ~: p( U$ Q `$ \Symmetry, 对称' w1 V: `' j) N) _
Systematic error, 系统误差
! G+ h( X' O9 fSystematic sampling, 系统抽样
+ G' P( O( r, D1 d; R; z1 g" LTags, 标签6 u9 _- m& i) v6 T5 m3 p$ V4 B4 r
Tail area, 尾部面积' f/ w' G4 e- U" U7 ~7 Y4 s7 M
Tail length, 尾长
6 G" O. J' d. Q9 O6 g& uTail weight, 尾重
8 t+ _: l3 v6 ^. w3 r- HTangent line, 切线
5 W/ K! f, |, S6 V+ K6 \& PTarget distribution, 目标分布
* C- J& `* S$ e5 o& y) oTaylor series, 泰勒级数
0 n8 k) ?6 \! ?0 gTendency of dispersion, 离散趋势
# m% l, o; `7 T' I$ q; PTesting of hypotheses, 假设检验! h' a$ C n/ o9 l4 Y$ X
Theoretical frequency, 理论频数' o1 S/ j8 M7 m$ ^# f l( @
Time series, 时间序列. C) F# t) Z* L" c8 U
Tolerance interval, 容忍区间
6 k6 u! _. \: c' C1 z \Tolerance lower limit, 容忍下限9 _( I2 B2 n' H# K2 X. ~: Z
Tolerance upper limit, 容忍上限 B/ j& N3 r, Y9 B
Torsion, 扰率- G6 w$ s# X' n# Z1 G
Total sum of square, 总平方和+ H0 H/ `) j1 n) l# n: U
Total variation, 总变异
6 \8 k# M& j4 i( \Transformation, 转换6 _) R) t# \6 J; w6 n
Treatment, 处理, T% F1 Y* g I, u
Trend, 趋势
6 l9 F \# l$ c$ }! oTrend of percentage, 百分比趋势' o$ h2 Z7 k. m5 n; ] g
Trial, 试验7 U) c4 b. r3 D' W( a3 U
Trial and error method, 试错法
O4 q" {0 F+ ?2 B K# vTuning constant, 细调常数
6 N4 Y' m; U g) T6 CTwo sided test, 双向检验9 O9 R+ S b; M: Q# R
Two-stage least squares, 二阶最小平方$ ^- m+ y) R: w$ t/ F
Two-stage sampling, 二阶段抽样
- ]! {1 y1 i+ m) VTwo-tailed test, 双侧检验- [+ w4 i2 D( _" r# L% P
Two-way analysis of variance, 双因素方差分析
7 a m! H9 T: n/ |6 wTwo-way table, 双向表
( m) I1 g! a+ KType I error, 一类错误/α错误
5 r* P/ m' o! {Type II error, 二类错误/β错误
6 N( J: @* v$ H& @) y1 V8 K+ EUMVU, 方差一致最小无偏估计简称
( G6 C3 v- `1 ?1 E! nUnbiased estimate, 无偏估计
. k- }* X8 `8 y: @9 z, p+ w, JUnconstrained nonlinear regression , 无约束非线性回归
' j. q3 K" N" Y1 k5 ]: BUnequal subclass number, 不等次级组含量
- Q% ~, K- ~- W0 _6 d5 uUngrouped data, 不分组资料
5 E+ [; B- H9 w' T6 f( y# v k; z3 L$ pUniform coordinate, 均匀坐标
: x, ^. i: G' a9 T6 ZUniform distribution, 均匀分布
. ~9 j4 i6 ?3 U& ^+ v! j- JUniformly minimum variance unbiased estimate, 方差一致最小无偏估计$ }# l8 e+ g( a( v7 P% A7 I
Unit, 单元4 r0 o$ f% A; l6 ?& N* f# w
Unordered categories, 无序分类2 O7 d- g& ^9 r9 w/ c# d5 B/ D
Upper limit, 上限1 T/ |" X2 R5 T5 Q
Upward rank, 升秩
! ~7 ?" {( H7 |8 k, pVague concept, 模糊概念8 ^. B: T- { |% o
Validity, 有效性
2 H3 W7 h* ^$ ^VARCOMP (Variance component estimation), 方差元素估计
- F: b) `- |% d! q/ H# _Variability, 变异性4 |' I, Z3 z7 b; y
Variable, 变量
3 A! s- l" V' [: p" ^Variance, 方差" m. f! L+ C) _7 Y
Variation, 变异
. k: T) C: W$ U: q, b7 f5 m( ~7 HVarimax orthogonal rotation, 方差最大正交旋转
4 a7 Y( J% T4 I, e* FVolume of distribution, 容积. b4 \3 K3 b& Q2 Z Z. E
W test, W检验" K* C# d! R# |- C- L, p
Weibull distribution, 威布尔分布 @0 ?( l& { h, N" ]8 b* n
Weight, 权数
6 b; S" [4 @ T7 \' MWeighted Chi-square test, 加权卡方检验/Cochran检验! i* s. g/ Q6 p. n; Q9 v( c, M
Weighted linear regression method, 加权直线回归
+ f- X. Z& a9 C! mWeighted mean, 加权平均数. q" X5 b1 L3 q* w- `+ Y2 L
Weighted mean square, 加权平均方差
) u. d" P) e; aWeighted sum of square, 加权平方和
2 R; C" \/ q. i7 ?& jWeighting coefficient, 权重系数" V8 x9 r6 w3 S
Weighting method, 加权法
, ~, Z* D G6 B" v0 |& j, t; d; TW-estimation, W估计量
& z m9 {; j' X( V6 s HW-estimation of location, 位置W估计量- l9 M! @1 J' f. j* |
Width, 宽度 q8 V. g2 u* ~# Z
Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验5 G1 C, o5 S" S1 |: v
Wild point, 野点/狂点% _' r. N" C- V! W, {
Wild value, 野值/狂值9 } `9 n B5 G9 q0 T4 P7 p* t5 J
Winsorized mean, 缩尾均值" O( |* S4 s* U: _+ d5 A
Withdraw, 失访 : w, `' G& Y3 H
Youden's index, 尤登指数5 C- I" z8 T* Y2 H& M
Z test, Z检验8 }4 y; @6 r% H
Zero correlation, 零相关0 Z1 Z- z' b8 G
Z-transformation, Z变换 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?注册会员
x
|