|
|
Absolute deviation, 绝对离差% Y& n2 m7 o% Y, I, N
Absolute number, 绝对数- l8 P3 i- O! i
Absolute residuals, 绝对残差( ^% ^% f5 T0 `& {4 N" `8 f
Acceleration array, 加速度立体阵4 r, w# l/ l; c- }0 S
Acceleration in an arbitrary direction, 任意方向上的加速度
6 R) @. g% Q0 \! R) {, xAcceleration normal, 法向加速度
; g; ^- a m' hAcceleration space dimension, 加速度空间的维数
4 G. }" [4 T, A& [- OAcceleration tangential, 切向加速度" ~9 e8 g- a* |& p6 w
Acceleration vector, 加速度向量
7 g# L3 @( R1 e- f1 g& n: I# wAcceptable hypothesis, 可接受假设
- D; _3 D; c9 T8 q' vAccumulation, 累积
5 M$ }, F7 A) r. ]% U1 k* SAccuracy, 准确度
7 ]- h+ `0 m( O m3 w' _- HActual frequency, 实际频数
# V) ?& K4 T& ]4 g+ E3 Y* YAdaptive estimator, 自适应估计量) J' @( A# w" ?" a# m. P% c
Addition, 相加
% H4 w7 f% r0 y% z1 RAddition theorem, 加法定理
# d% @/ C% Y" P" r* C, Z0 DAdditivity, 可加性: ^# N# Z- y9 {) f; g5 Z
Adjusted rate, 调整率
; m- I+ b1 w0 d: a2 R& oAdjusted value, 校正值
' E5 h4 {/ \1 w- R! l9 bAdmissible error, 容许误差
- e) C6 l) z, ~4 ?# SAggregation, 聚集性
3 I7 X4 ]/ ?: ~6 ?Alternative hypothesis, 备择假设
4 H" S6 L& N1 \Among groups, 组间1 c& Q0 v* S Y& B0 ~# F
Amounts, 总量7 {% P! B h+ K* h, W
Analysis of correlation, 相关分析
5 N3 b2 u! y# V iAnalysis of covariance, 协方差分析' {* a `- }# J) H, J, s( I+ y
Analysis of regression, 回归分析- w, Q: n: E1 d4 q
Analysis of time series, 时间序列分析( D V5 a1 p* v' ?/ @
Analysis of variance, 方差分析
' _( ~$ L' A' H# E1 d; K6 AAngular transformation, 角转换
! {8 P2 n1 O$ Y; z2 Y; cANOVA (analysis of variance), 方差分析
8 c& J5 L* h% xANOVA Models, 方差分析模型* p$ I# t) ^4 K" _1 i
Arcing, 弧/弧旋% `9 e3 i) X `; x
Arcsine transformation, 反正弦变换* p0 T" D. M1 b6 l
Area under the curve, 曲线面积
V. R& ]( u! H2 O2 {3 SAREG , 评估从一个时间点到下一个时间点回归相关时的误差 ) y, C* s* |9 q1 u& G' @8 A
ARIMA, 季节和非季节性单变量模型的极大似然估计
3 V6 p3 m+ B+ c) g8 R" mArithmetic grid paper, 算术格纸0 `$ i1 ]4 ]1 X2 P1 ?, D5 B! [ P2 y) b
Arithmetic mean, 算术平均数7 H! u+ Q# N% p- L4 \ ^0 j
Arrhenius relation, 艾恩尼斯关系
9 V) l+ a/ D; m/ EAssessing fit, 拟合的评估
5 K) i7 E+ y& ]Associative laws, 结合律
- n% {5 U- V9 R# \7 L2 UAsymmetric distribution, 非对称分布/ B% Y1 I; {0 A0 D
Asymptotic bias, 渐近偏倚
9 c! {% H7 Z# N4 b3 I0 H1 }Asymptotic efficiency, 渐近效率0 U) o# V: g* A6 t
Asymptotic variance, 渐近方差% e9 Y4 }1 k/ s" I
Attributable risk, 归因危险度
; k' e5 W6 t, [Attribute data, 属性资料
4 Y' F. Q9 [* s# q( lAttribution, 属性+ F: [/ {1 }% Q3 |8 X
Autocorrelation, 自相关/ t* h' O1 S% X- O% F3 v. N8 g
Autocorrelation of residuals, 残差的自相关1 Q: z4 v/ q) R5 P
Average, 平均数
, g$ s" s; r P. Z% j; sAverage confidence interval length, 平均置信区间长度+ v6 i, _* ~5 ?; P* ^! d
Average growth rate, 平均增长率' P. e4 v4 Q; I5 b5 Z8 ~3 }( U- q
Bar chart, 条形图
5 N8 P4 n& }9 Y1 c1 c$ e/ {0 qBar graph, 条形图
8 |7 {9 o* {- m E Y: l% sBase period, 基期+ l$ L3 h( Q6 z( L1 M3 @) s2 T: o1 t
Bayes' theorem , Bayes定理 V7 \* a9 K' A1 N
Bell-shaped curve, 钟形曲线- e9 f; x) G6 Z
Bernoulli distribution, 伯努力分布9 k8 B" A2 `0 c' c6 N% F
Best-trim estimator, 最好切尾估计量
' R4 c3 l N; s# K; [) YBias, 偏性
) {6 ^, ]" e1 ^( ? f2 X/ Y3 zBinary logistic regression, 二元逻辑斯蒂回归2 a: C% w$ u+ |+ Q7 f$ ^
Binomial distribution, 二项分布* k- y4 y% |8 O6 s5 t
Bisquare, 双平方4 v8 S0 |7 h. V
Bivariate Correlate, 二变量相关 Y( {- H# }9 {2 s5 N
Bivariate normal distribution, 双变量正态分布
, y/ i7 `3 {" K% p% r1 G2 H7 FBivariate normal population, 双变量正态总体( o: d. @0 H8 j1 W& C
Biweight interval, 双权区间
: w/ g4 X1 v$ xBiweight M-estimator, 双权M估计量 P: w9 K; K* k l
Block, 区组/配伍组
& p' D" l0 ^+ NBMDP(Biomedical computer programs), BMDP统计软件包& M6 W b, h! g( `3 f9 `
Boxplots, 箱线图/箱尾图$ H. ?; b: A+ Y ^' }
Breakdown bound, 崩溃界/崩溃点. A4 K- n9 s3 s5 f0 t! y
Canonical correlation, 典型相关
% I9 ~0 b9 ]- P1 e8 {7 @Caption, 纵标目, a" O! x, q2 t7 [/ q
Case-control study, 病例对照研究6 U/ l" g1 z& y5 P# Q+ c" P
Categorical variable, 分类变量1 j6 ~' R+ y }9 U; S B$ }$ u" K9 W
Catenary, 悬链线
) a6 c7 ]+ Y1 [1 m$ zCauchy distribution, 柯西分布
- h( L) b; ^1 Q7 @! P8 F0 MCause-and-effect relationship, 因果关系
# ]. Q; R i0 U0 e5 SCell, 单元3 U4 ^5 l+ h! `% B+ }& ~; g) }3 O
Censoring, 终检( y: N) C; ]8 x$ O1 Y- C9 J
Center of symmetry, 对称中心/ t, U5 h: D6 B5 k1 j' `
Centering and scaling, 中心化和定标
: ?' l9 k7 E/ |. CCentral tendency, 集中趋势
3 {) x* J& M+ ^1 S" A Q yCentral value, 中心值
+ K8 N/ \% W. O/ hCHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测
3 s/ o) t. g& g6 |4 PChance, 机遇
* X/ q0 o! |1 o( S- pChance error, 随机误差
2 n1 E3 i" O! g: j1 b: f; {% uChance variable, 随机变量" Z" x( g3 t( q# v" e7 D
Characteristic equation, 特征方程
+ j( K9 L8 y8 B+ l6 e# B5 _5 BCharacteristic root, 特征根$ C2 L) i$ ]7 o2 f0 ]3 Y& E
Characteristic vector, 特征向量
3 @* R/ H9 W! w! `+ X) yChebshev criterion of fit, 拟合的切比雪夫准则
) t' _7 z, B0 x- b+ VChernoff faces, 切尔诺夫脸谱图
! F2 E) M9 e9 I& ^Chi-square test, 卡方检验/χ2检验
2 D& t7 ~' S( t# l# e* K* uCholeskey decomposition, 乔洛斯基分解
+ y% s1 A7 U' `( Y% J0 }, SCircle chart, 圆图
0 j, M' l" Z' ?# |3 J8 u# k% wClass interval, 组距
! q/ _, E" l0 X; tClass mid-value, 组中值
$ b, H7 y2 @/ V0 B4 HClass upper limit, 组上限
3 D6 A$ I V) yClassified variable, 分类变量
; W' {; Q3 [! t9 K6 c. QCluster analysis, 聚类分析
" ~+ |2 F) `# L- o5 S5 m6 ~Cluster sampling, 整群抽样
+ _5 p, o& N& O) x) V: gCode, 代码' Z' ^6 X5 M/ ~. Q7 n& f& S$ S# ^
Coded data, 编码数据
6 }9 F) _ c+ x' x0 @Coding, 编码6 N% i2 E1 C" Q
Coefficient of contingency, 列联系数
1 W; q8 Z5 Z' }3 cCoefficient of determination, 决定系数7 |/ l. W0 o) @. C' E7 Z
Coefficient of multiple correlation, 多重相关系数
6 t4 V& K* E; A/ u7 y- iCoefficient of partial correlation, 偏相关系数* d% \! y1 @3 n; G& F7 F" \
Coefficient of production-moment correlation, 积差相关系数
& U2 `; B/ q/ i" D+ Z0 n: ]8 |Coefficient of rank correlation, 等级相关系数( R) b5 f1 j7 \( {' q
Coefficient of regression, 回归系数3 l, X5 j9 [8 \' `4 A6 c7 L
Coefficient of skewness, 偏度系数6 v9 i) `# `# L8 @8 E/ y# x- O2 ?
Coefficient of variation, 变异系数& ]+ A. Z) t( C& ^( y9 N( e
Cohort study, 队列研究
. {! [3 F" ]* M4 u2 N7 e4 z6 ?8 nColumn, 列
# z; v+ W8 }) nColumn effect, 列效应
- }) X, X/ V3 tColumn factor, 列因素
) y6 O& P/ {. BCombination pool, 合并5 s1 ^$ _6 P; C* N: q2 s* F
Combinative table, 组合表( Q/ E4 }$ \8 b3 r
Common factor, 共性因子
0 y1 v3 c8 t% n, z5 n+ ^% p: N( o2 n" fCommon regression coefficient, 公共回归系数
9 ?. J) c. @" Q4 ^7 E. t+ C/ KCommon value, 共同值4 \8 x, d0 [3 s6 \) ^, j! a
Common variance, 公共方差
9 L- {8 J% o, m2 XCommon variation, 公共变异
6 N0 j' ^8 ~4 R( |! zCommunality variance, 共性方差
& A: u- F5 ~& d3 B0 E i8 q) PComparability, 可比性+ U' e, H5 ~" ] u$ l0 ?2 Q
Comparison of bathes, 批比较% s( I. e; o) A9 m, o
Comparison value, 比较值
; u4 Z3 E8 [: G* u! h- Q: Z, u1 sCompartment model, 分部模型$ d! B: h- }; o K
Compassion, 伸缩
3 z& K+ F$ t c& L# g8 i8 x( l4 gComplement of an event, 补事件7 k" n1 _: C+ D3 ~$ O' _4 }
Complete association, 完全正相关, E; P* Q0 h" ?6 _+ W! a! u
Complete dissociation, 完全不相关
+ M' M# S' |7 v3 m5 p4 [ qComplete statistics, 完备统计量
' m. e6 F# F, a* ?; U$ bCompletely randomized design, 完全随机化设计
( x y+ v% P7 \1 b* }% ^3 yComposite event, 联合事件
1 n2 \% c8 b% @. V0 \8 @7 k' h) aComposite events, 复合事件
0 _* h5 m( u6 A$ f1 P" aConcavity, 凹性 R4 ]. o' S1 ?' T) D
Conditional expectation, 条件期望: }( t( d9 F8 I6 Z( h0 ~$ R
Conditional likelihood, 条件似然2 c. z& \, A$ m, z2 ?1 Y
Conditional probability, 条件概率
! k" r( J2 S/ L6 j9 HConditionally linear, 依条件线性4 u8 H( E0 `: I- d( `9 y' x
Confidence interval, 置信区间& k0 {9 j) w, E$ w5 h% p
Confidence limit, 置信限
! h8 u: A: c& Q+ c1 K5 [8 `7 f' J/ X' yConfidence lower limit, 置信下限4 ^) e$ j( `- P6 @! W, P& P8 ?
Confidence upper limit, 置信上限
& ]0 f$ {, y- b! Q# L, oConfirmatory Factor Analysis , 验证性因子分析: o9 H3 K5 {$ j& J
Confirmatory research, 证实性实验研究; r9 M/ J% z& g2 i* h
Confounding factor, 混杂因素
3 t7 _' D, V* c1 f6 nConjoint, 联合分析
) |1 a" T8 W D# Q% R; \Consistency, 相合性
( {0 r! M, H7 D$ g: \/ }Consistency check, 一致性检验, c- r# ^9 p# E5 i9 }
Consistent asymptotically normal estimate, 相合渐近正态估计
/ C# P* P q) P9 x I5 ?Consistent estimate, 相合估计- z* Z8 ^( ^* x; H
Constrained nonlinear regression, 受约束非线性回归# A* z5 u/ M% R1 ?
Constraint, 约束
% H2 }' X Z, M' J& s/ oContaminated distribution, 污染分布3 b* o' c+ L5 h# |9 t6 e) K
Contaminated Gausssian, 污染高斯分布/ Q$ j9 w/ x$ |" R3 }
Contaminated normal distribution, 污染正态分布: \* k6 a R( b
Contamination, 污染* ?$ H% K9 { C9 D6 G
Contamination model, 污染模型1 N9 c c7 C% B$ S
Contingency table, 列联表' ]" M/ S4 q* x& U
Contour, 边界线" R$ V" d2 [2 m4 F, C
Contribution rate, 贡献率
; B% C5 r+ L, Y9 z0 j2 YControl, 对照6 N. S* b' P% P, [1 T
Controlled experiments, 对照实验% _" B8 M! W& G( ^) [( q' y" H
Conventional depth, 常规深度: F$ Z" b& M6 Z" M/ w; v4 m; I
Convolution, 卷积# m7 v7 y& k5 d2 B# v$ H6 a; T9 M
Corrected factor, 校正因子" ]" G; [ j. A2 H
Corrected mean, 校正均值# a' c$ h- y1 A& @/ N
Correction coefficient, 校正系数
+ M; v! j1 e1 L# G. H; j! P' t VCorrectness, 正确性0 s, W* n8 l2 x; c* A
Correlation coefficient, 相关系数
7 S& S2 z: `7 {0 `$ Z5 lCorrelation index, 相关指数
: S1 Y- ?" o! G( P1 ^2 E9 v- KCorrespondence, 对应3 y+ ^9 r. B- {
Counting, 计数
9 U# z# k2 c( H- d1 OCounts, 计数/频数
$ u# g/ A5 u7 z" bCovariance, 协方差
. X; p( o; }% ?1 ^2 F4 f' q1 eCovariant, 共变
% r- l$ {) o+ Q6 `2 A1 ?Cox Regression, Cox回归
7 Q; f3 ?4 R4 B, \Criteria for fitting, 拟合准则" Z8 J0 ^0 I( U K) E# O
Criteria of least squares, 最小二乘准则
- u( j* |2 `8 L2 C* S! y4 l- MCritical ratio, 临界比
. }& E R \* r' g! zCritical region, 拒绝域; t0 z9 j1 K, f* h
Critical value, 临界值, x6 J1 i$ G. V! F" y6 n/ `
Cross-over design, 交叉设计
5 Y& A$ S; n( D' LCross-section analysis, 横断面分析, [" T# Z2 }& l' I s, D
Cross-section survey, 横断面调查0 @, i, Y9 i8 h, t6 e3 F
Crosstabs , 交叉表
% n$ Z9 o: Y/ GCross-tabulation table, 复合表
' ^, m1 z. ]9 j x" {0 A4 HCube root, 立方根
, A: O0 E4 T. r) n, u; ?, k' O9 BCumulative distribution function, 分布函数& Q) n+ O9 J% s: N8 W. T
Cumulative probability, 累计概率
% |; L! i: t5 i; a/ R3 |8 G5 Y4 k5 vCurvature, 曲率/弯曲
9 ^7 e2 U0 n+ yCurvature, 曲率
2 b6 X, |. b2 G) v/ B( i4 _Curve fit , 曲线拟和 ' ^ a3 F' M, V% `
Curve fitting, 曲线拟合
5 ~% a: D' m& g5 D5 C; ICurvilinear regression, 曲线回归* ]5 C, x8 }; b! m! n
Curvilinear relation, 曲线关系$ V2 o7 k n9 I5 d: s" r6 A
Cut-and-try method, 尝试法
9 L* {; F6 o; z, y5 r2 PCycle, 周期
- @- T' ~5 k* l0 M. TCyclist, 周期性
. S& }1 F5 h9 B4 h$ q7 R& W! FD test, D检验
" I2 u4 o( A, ~1 f0 X1 R2 ?# YData acquisition, 资料收集
4 D) L" p# A( C1 BData bank, 数据库; H9 K; o; a, O/ A3 `, }* I
Data capacity, 数据容量; ]& F# `2 @) t' ]+ p. C5 p
Data deficiencies, 数据缺乏" Z+ R4 x+ K, X$ Q4 Q
Data handling, 数据处理
8 p: M9 z9 C4 T1 x2 o5 FData manipulation, 数据处理
5 G3 ~/ d' Z" }Data processing, 数据处理
. R. T1 ~" q% x9 xData reduction, 数据缩减/ ~2 R/ |2 d: ]8 x1 L3 w' y
Data set, 数据集; b& _5 f* G2 w7 F' w5 m
Data sources, 数据来源" p. J7 G' ?) ~3 J( ~% h
Data transformation, 数据变换
8 O3 y/ H5 |9 G8 L& @" H: r0 ^Data validity, 数据有效性 D% D% t6 _/ p& d( e9 p
Data-in, 数据输入
+ T; o% \4 y: u: OData-out, 数据输出, _/ P- z4 d" H& C- k6 l# J
Dead time, 停滞期. f: z: W/ u+ y. }4 i! ~2 T$ X/ i4 Q) T
Degree of freedom, 自由度
) T1 l& \" }& \$ K7 ^Degree of precision, 精密度
# T6 S# t% r+ f, ^3 t0 r) O* E8 EDegree of reliability, 可靠性程度
+ K, _& W) P2 q' W8 }8 gDegression, 递减
. U# y! k* v' @. tDensity function, 密度函数, j# r2 L- `1 o' L0 ?2 m" A
Density of data points, 数据点的密度
2 w5 }" `& ^ F) r. { ODependent variable, 应变量/依变量/因变量( g o7 d* X0 D& l+ j) y- A
Dependent variable, 因变量3 x8 U& s, c, B$ ~. E+ q
Depth, 深度7 \3 b) y% p& Z: M8 u, _
Derivative matrix, 导数矩阵
/ @( [1 m5 k7 {& E0 Z+ W0 |$ mDerivative-free methods, 无导数方法+ _, w3 M7 l' z. N
Design, 设计/ R8 g$ q5 [! S7 c3 V/ c1 `
Determinacy, 确定性3 j6 j* J* y" x1 ?
Determinant, 行列式
1 N- a L2 @1 s5 u, c* {! [Determinant, 决定因素- L' S8 g' g3 x% V
Deviation, 离差
* J$ s7 b! v7 Q0 ?4 d; r) TDeviation from average, 离均差" i2 L ?& O" A" q
Diagnostic plot, 诊断图
9 H* n' G0 Z t7 F( s' IDichotomous variable, 二分变量& _0 M1 j- V, t4 z% ^- P
Differential equation, 微分方程* e7 g1 S9 }( n+ D: I
Direct standardization, 直接标准化法
2 F: x/ u! r: f" e' ?8 |Discrete variable, 离散型变量" k! v- E& G. g. s
DISCRIMINANT, 判断
$ k9 t6 e$ H/ e! {. HDiscriminant analysis, 判别分析
9 R. {, c) H+ \- Y2 o& iDiscriminant coefficient, 判别系数0 Q) M! y0 \3 U3 w: S' Q
Discriminant function, 判别值( ?$ @. e w+ W9 h6 g- A$ F* S& A
Dispersion, 散布/分散度% a: O+ S( d1 l2 G3 Y; {
Disproportional, 不成比例的
0 I5 ^7 K4 l' Q' q( WDisproportionate sub-class numbers, 不成比例次级组含量; c- v) [* l+ I' e2 Y0 u# U
Distribution free, 分布无关性/免分布) S2 h! y0 y1 S
Distribution shape, 分布形状
$ R4 q$ w0 ]% D& K: ODistribution-free method, 任意分布法
$ M/ ^' k: |. K; ^: VDistributive laws, 分配律
/ G f1 c5 e$ @5 R. t* p& {5 P( [* eDisturbance, 随机扰动项
1 ^% e, `8 i( I p; y) o' v$ b) v! IDose response curve, 剂量反应曲线3 g" k4 j3 D8 a" C! z, S# u
Double blind method, 双盲法
8 Z: `' h$ E# B# xDouble blind trial, 双盲试验4 p) c- R, e- T3 h
Double exponential distribution, 双指数分布
! Y6 g. s/ l$ z4 a0 bDouble logarithmic, 双对数0 e C. u$ S! }/ F, {) h) o
Downward rank, 降秩" y4 s7 Z. x0 B" E( u3 e" X
Dual-space plot, 对偶空间图
; H# \7 V2 m4 m# B6 j3 {+ ^DUD, 无导数方法
) ^" o: |' F, CDuncan's new multiple range method, 新复极差法/Duncan新法" |6 l3 ]' V8 ?& t8 c; J+ @2 Q
Effect, 实验效应
3 O( s r+ P. S) a8 C" xEigenvalue, 特征值) M7 L& N3 h* U* g; C
Eigenvector, 特征向量% o7 P& O3 A0 N1 _! L
Ellipse, 椭圆
- R& S% ^; f+ z+ \0 rEmpirical distribution, 经验分布: j: e! u7 D! |; Q
Empirical probability, 经验概率单位
- g7 ?2 F' B- Q. uEnumeration data, 计数资料% V& ~, z' v4 |! D7 C3 P4 z( Z9 z
Equal sun-class number, 相等次级组含量
- Z+ \3 G5 o4 s7 {: Z# QEqually likely, 等可能2 K. a& P9 T6 I4 x8 v' F6 L' r
Equivariance, 同变性
& }4 R" B8 R. r( K7 P: {Error, 误差/错误
/ c" c! A8 @9 c* K2 oError of estimate, 估计误差7 P6 }. }5 _6 [% V3 x
Error type I, 第一类错误
8 d7 M, J7 l$ }- ^# d1 Q7 dError type II, 第二类错误
0 v( z9 r g) K0 n0 MEstimand, 被估量. N, s; ?6 I6 K+ @
Estimated error mean squares, 估计误差均方
, P' H4 W3 r4 ~ X6 cEstimated error sum of squares, 估计误差平方和
- e' G0 C/ P8 e' j$ e1 e; mEuclidean distance, 欧式距离
; u( D$ D4 r* s, [ B8 sEvent, 事件2 {' X m( {- e
Event, 事件& P+ h/ G+ G ]1 |8 ?4 z' t N
Exceptional data point, 异常数据点
$ e9 o* x/ t: g5 dExpectation plane, 期望平面* F" l# F$ E1 q x4 K" ?
Expectation surface, 期望曲面3 _( @# S/ b9 K* ~4 w/ l0 l3 ~& C( W2 I
Expected values, 期望值
( f9 P" x8 `$ k# t6 B" Y' v& ZExperiment, 实验/ I( c w" ^9 R/ s. G% g
Experimental sampling, 试验抽样
: f! N2 j K2 pExperimental unit, 试验单位9 }/ \; h$ W1 ]7 h4 m" C: I
Explanatory variable, 说明变量1 \* Y* Q* O6 L) [7 R
Exploratory data analysis, 探索性数据分析0 P k s7 I6 t' l; j
Explore Summarize, 探索-摘要
~" M# H! l6 v/ ^( L6 U8 D7 r sExponential curve, 指数曲线
; U9 ]1 {; q. r- A$ {5 \4 IExponential growth, 指数式增长
2 L$ t6 a& ^( r' v" y0 j% o/ i1 `" HEXSMOOTH, 指数平滑方法
9 }$ n+ Q0 |7 sExtended fit, 扩充拟合
, b. A% z$ Z8 A" E+ w2 m" X+ FExtra parameter, 附加参数
8 r# v: a% N0 ~5 [- dExtrapolation, 外推法$ h; D8 |0 H' T% {' e7 u1 q/ }" q
Extreme observation, 末端观测值( Q- `2 l7 A8 [( I
Extremes, 极端值/极值
1 d/ d6 F3 H$ d* P7 H, C0 ]F distribution, F分布
: N0 {( U( b7 j5 GF test, F检验" j" l9 k( { M- O; I3 ]
Factor, 因素/因子9 E- O, ?) L. A$ W5 t
Factor analysis, 因子分析
! S* x8 P4 U7 o8 vFactor Analysis, 因子分析
) E$ M9 f& s$ e4 I9 ^: h' i8 CFactor score, 因子得分
" g2 W- I6 ^( ~; `0 ZFactorial, 阶乘; X: Y. F/ M7 y! Q
Factorial design, 析因试验设计# Z% T; x0 z; V1 t9 y# \5 f( t
False negative, 假阴性
: t f# G( O# G# ]# L/ k7 kFalse negative error, 假阴性错误5 O; O: s, ~; ~+ W! Q
Family of distributions, 分布族
) h {4 {6 ~& B8 D" b; l7 o# h0 ^Family of estimators, 估计量族
; p, I9 u5 i2 @5 ?9 jFanning, 扇面
2 l2 Q% A% x8 ~8 y* r! dFatality rate, 病死率2 \# g/ j t$ O+ S% ^
Field investigation, 现场调查
- y0 L' p0 [3 uField survey, 现场调查7 s7 {2 d& ]; D+ O
Finite population, 有限总体
) U( `; ^# S8 S' tFinite-sample, 有限样本
4 ~3 q+ O1 Q% }( KFirst derivative, 一阶导数
4 l$ u& Z0 {1 p. n4 M( k$ ~First principal component, 第一主成分
# \* _& _ ?: W: c( f1 I0 h1 UFirst quartile, 第一四分位数) g d; U" `- k
Fisher information, 费雪信息量
" V3 R! l: |3 V3 E- t3 nFitted value, 拟合值
: p$ j7 z: _* }: xFitting a curve, 曲线拟合
5 Y% {* p% q/ B- XFixed base, 定基7 h* d+ Y3 [7 k+ _: g+ w! a
Fluctuation, 随机起伏) i/ \& b. N, f! \5 I
Forecast, 预测+ a$ ~8 B9 B( ]0 t# ]# Z# s- k+ `
Four fold table, 四格表
/ B$ w; n3 {' Q# H6 m+ AFourth, 四分点5 `# `) W7 T8 I
Fraction blow, 左侧比率# d0 p5 O( D2 v6 ~" q3 V. A3 X
Fractional error, 相对误差# Q# I' D& j- g6 v5 j
Frequency, 频率
$ P) C+ ^) B0 Z1 W: H+ OFrequency polygon, 频数多边图5 D, w. X1 L4 ?* ^
Frontier point, 界限点! I4 s3 l8 y* a+ t0 j, V$ Y4 x
Function relationship, 泛函关系7 u* t1 e6 {* b" M
Gamma distribution, 伽玛分布 Y! R+ Y; K0 |
Gauss increment, 高斯增量 H$ @9 t, N. z4 f+ y! w& @
Gaussian distribution, 高斯分布/正态分布6 d( D. J& m- P
Gauss-Newton increment, 高斯-牛顿增量
1 I) H8 T6 N( G$ w: I5 yGeneral census, 全面普查$ q: w9 Z2 ]) w) N
GENLOG (Generalized liner models), 广义线性模型
! V9 v, v' Y" a; LGeometric mean, 几何平均数
7 N- g2 @% M5 H1 H4 [! wGini's mean difference, 基尼均差
- ?, y, y K2 E: J, P1 iGLM (General liner models), 一般线性模型
$ e( j0 ?% c8 yGoodness of fit, 拟和优度/配合度
4 A0 o2 `+ v1 EGradient of determinant, 行列式的梯度 e; y4 q0 t5 A2 L( y
Graeco-Latin square, 希腊拉丁方) V8 s7 n: F3 X/ b
Grand mean, 总均值
* K; |2 J4 K6 s2 vGross errors, 重大错误
g* ]5 p3 H8 _% JGross-error sensitivity, 大错敏感度
, Y# ^; P* Z- g& ?9 Z& W& B8 p0 i* @Group averages, 分组平均
5 O# n, F8 P) l" z$ PGrouped data, 分组资料
: S' i8 A E. l( t4 \. T4 S; P) } g0 yGuessed mean, 假定平均数/ P3 q( b5 Q: H& v4 J
Half-life, 半衰期* o) N! a1 l' [8 c$ b# h5 E. k
Hampel M-estimators, 汉佩尔M估计量7 z7 h6 V( j8 s% k
Happenstance, 偶然事件6 V8 z# f4 J) X/ y0 ?% d9 ?1 x
Harmonic mean, 调和均数
- S) |7 \- c, t1 THazard function, 风险均数+ M' G4 `* g7 g8 n9 r
Hazard rate, 风险率7 a, D# M L% d4 s$ {; u' V& j
Heading, 标目
9 B2 W# S$ c% d; sHeavy-tailed distribution, 重尾分布" }% L; l% k$ ~ t; _
Hessian array, 海森立体阵
7 u0 N# i' |. c0 U& u0 \Heterogeneity, 不同质& [3 P- z. l! S/ `& S& }' @; f
Heterogeneity of variance, 方差不齐 ) B9 l8 w' F, j& g2 u. G
Hierarchical classification, 组内分组8 ]( i0 ^3 m) h5 J6 _6 X# o+ f
Hierarchical clustering method, 系统聚类法. N8 _5 I P& l( ?5 s6 i0 |3 D
High-leverage point, 高杠杆率点
0 B4 @' m& X1 N: gHILOGLINEAR, 多维列联表的层次对数线性模型; i0 s* D( u3 R( Q. T
Hinge, 折叶点
+ ~' q; }) H- a8 D; q( nHistogram, 直方图! T' d, h7 C" W" a* V7 b; T; V! H
Historical cohort study, 历史性队列研究
9 @2 J' V& ] iHoles, 空洞
4 s2 J; E j- N7 j1 fHOMALS, 多重响应分析
7 E# X& Z6 ]: B0 Z/ T: VHomogeneity of variance, 方差齐性 }7 H+ a( a+ X; a* ~8 O7 i, O
Homogeneity test, 齐性检验
% H! \ {' f* i, g# z) qHuber M-estimators, 休伯M估计量
+ a, m9 C6 g+ e1 w1 J+ N) C$ |' nHyperbola, 双曲线
8 G& | b4 e6 GHypothesis testing, 假设检验9 b( O. ^! N( O, w6 z. i; f# U
Hypothetical universe, 假设总体% a3 w: Z$ T h% @. W
Impossible event, 不可能事件! ^4 H4 k3 o3 w# ^
Independence, 独立性8 J% S: I. r- c
Independent variable, 自变量. x, m% l3 ^$ t' ?
Index, 指标/指数/ l: G/ g1 a8 [+ u
Indirect standardization, 间接标准化法
& q6 U/ J/ i. i8 ^( z) V7 B# iIndividual, 个体2 f& J, a* p: Y- }
Inference band, 推断带# D( J# E* Q8 a9 M5 K
Infinite population, 无限总体# E$ [/ D6 f$ {! \! b& m+ z( n
Infinitely great, 无穷大
: _8 j) p) K$ ?% n8 O$ vInfinitely small, 无穷小. @4 X* t& m" O2 v
Influence curve, 影响曲线6 q! D. h# }9 x$ Q O. `
Information capacity, 信息容量6 \2 X' j; D1 z3 T/ r$ }3 p: S$ m
Initial condition, 初始条件* x2 M9 b* ~- W3 B& {! M" T5 k* L
Initial estimate, 初始估计值/ z0 h# j3 Y |0 _2 e2 `! T$ ~
Initial level, 最初水平
' a8 L# {" v, hInteraction, 交互作用
Z0 a1 e8 G1 S* n* m% _0 H- O% Z2 E3 QInteraction terms, 交互作用项0 @) n( m2 |8 P" J% E3 ?
Intercept, 截距
' h& \6 X0 i! E- eInterpolation, 内插法 X$ p$ T5 Q( g+ G9 m
Interquartile range, 四分位距
) l' Z H) L; F4 Z$ ~+ SInterval estimation, 区间估计9 r6 O6 J9 l* R9 E
Intervals of equal probability, 等概率区间
7 k$ ?+ u( E$ o+ Z! U) s. GIntrinsic curvature, 固有曲率- u; T7 F$ v6 ]' E. ~: D
Invariance, 不变性" ? U3 R- V1 J4 r7 }: \: \+ T1 A
Inverse matrix, 逆矩阵
e; ]* \' x6 l6 Y, j( _3 [# F/ zInverse probability, 逆概率
- P4 B( x/ E1 \8 LInverse sine transformation, 反正弦变换
8 `' T/ V% ]( `3 ~! UIteration, 迭代
% q$ h# ]& I8 K6 c1 s+ }' `Jacobian determinant, 雅可比行列式& v, C9 Q# ]6 B
Joint distribution function, 分布函数9 \1 N% \8 a+ ]+ n
Joint probability, 联合概率
7 a4 y% ?4 _2 w1 A+ ~6 }; FJoint probability distribution, 联合概率分布
1 \2 |8 U. x4 ^1 fK means method, 逐步聚类法! s( V# X- s* |+ F( `+ ?. N- G1 M
Kaplan-Meier, 评估事件的时间长度
8 y( O- B5 I& r( F' ^. wKaplan-Merier chart, Kaplan-Merier图! P% g% k: j( n
Kendall's rank correlation, Kendall等级相关
4 |2 j/ w/ ^* I0 W6 C2 @- y; P" N3 ~Kinetic, 动力学
' t C/ _9 @/ R+ x& QKolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验
$ V5 _5 u u, Z, q9 yKruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验+ E9 N; e! L; ~; v `, l
Kurtosis, 峰度
7 x* E& S- Q2 G$ f- m9 f+ t: }Lack of fit, 失拟% c/ e- E% s/ v
Ladder of powers, 幂阶梯* @3 e7 _' g: b2 ]! N1 }
Lag, 滞后
: _- u9 c3 I- V1 J1 v& |Large sample, 大样本
* X- r6 S( n4 H) DLarge sample test, 大样本检验
" g! T# Z4 M" y. gLatin square, 拉丁方) l' [+ F ~6 J0 d
Latin square design, 拉丁方设计2 I- W7 O. w6 n! w1 {
Leakage, 泄漏/ f8 @$ ~$ ^7 S* c
Least favorable configuration, 最不利构形1 l+ M5 h+ `7 J a& D8 F
Least favorable distribution, 最不利分布& ~7 e: o- h7 L) R( Y
Least significant difference, 最小显著差法
?8 O+ j& Y' l/ j* J5 W7 xLeast square method, 最小二乘法( H) D/ n6 C$ l# n
Least-absolute-residuals estimates, 最小绝对残差估计
! _1 c$ `9 t& ?+ m$ g+ q2 {Least-absolute-residuals fit, 最小绝对残差拟合
P+ {, j: `' hLeast-absolute-residuals line, 最小绝对残差线
, y5 @6 X+ X1 ?6 \% DLegend, 图例% O. ^9 U, y2 e2 O `9 c
L-estimator, L估计量% C8 K5 T( x, b+ Z
L-estimator of location, 位置L估计量
9 `& O- x2 G- O/ f5 \0 N. }( }$ oL-estimator of scale, 尺度L估计量
/ J$ Q5 s/ t9 Z$ iLevel, 水平2 M/ S& A( |( B* s$ G9 A+ ~
Life expectance, 预期期望寿命& [1 |0 v! ~ _( p2 V7 o8 M8 m: {
Life table, 寿命表* L& b6 [0 r+ S
Life table method, 生命表法; T2 ~" S; g; U; t
Light-tailed distribution, 轻尾分布/ @' h7 B( Q, W& r7 V+ F) C
Likelihood function, 似然函数
4 w% [' Z- I0 M5 N6 V) _& I$ p' ]* c6 CLikelihood ratio, 似然比
: a6 S# y6 {% fline graph, 线图
, T. d: a" H! @) vLinear correlation, 直线相关
, o- P6 ?6 j9 g8 CLinear equation, 线性方程
* h- a7 i* C: |6 { NLinear programming, 线性规划
0 _8 S1 e8 V9 A3 BLinear regression, 直线回归9 Y1 z; W$ E1 u( x1 g* R4 N
Linear Regression, 线性回归% W# `9 h: [7 w1 |$ b5 ?4 E) X
Linear trend, 线性趋势
! i: \* u+ c2 ILoading, 载荷
6 ^8 t" d+ u/ v! G3 CLocation and scale equivariance, 位置尺度同变性4 F& O2 ^- U$ f- E, n; d P
Location equivariance, 位置同变性
6 Y! C" u; ]( X( Y8 }8 ^ {5 FLocation invariance, 位置不变性
+ w. h, S6 H$ b: B, n) H3 iLocation scale family, 位置尺度族1 V9 ^# W4 R4 x- [/ j
Log rank test, 时序检验 8 a+ V( H. ~/ ~$ b1 ~4 y. |% x
Logarithmic curve, 对数曲线- B- v( {+ i W3 T$ M* a0 X
Logarithmic normal distribution, 对数正态分布
- e& O( I7 X3 \& wLogarithmic scale, 对数尺度$ {; E( m! K4 h/ V* s- b' p! f
Logarithmic transformation, 对数变换
/ x: Q0 p7 ]" J* KLogic check, 逻辑检查
8 e/ w& H7 I# j0 p4 b) C# ~5 O; GLogistic distribution, 逻辑斯特分布
3 f/ ]. ^0 L) J! I, iLogit transformation, Logit转换$ p' T, s; O% h7 _
LOGLINEAR, 多维列联表通用模型 ) b3 O" t! w3 C7 j6 t$ c
Lognormal distribution, 对数正态分布
7 b) {9 E# E! q4 N+ LLost function, 损失函数
' I+ H- Y5 M4 j4 Y6 I5 b8 RLow correlation, 低度相关6 _) a; _8 Y+ W% y
Lower limit, 下限8 n3 m- \( s* y* r+ {, i) V$ [* e
Lowest-attained variance, 最小可达方差
' |) H: k S4 \- ^# U' }* U5 Q0 LLSD, 最小显著差法的简称2 W9 b/ f3 w# c
Lurking variable, 潜在变量
, j( c. d3 ^4 e+ HMain effect, 主效应# o+ ~4 i6 C6 g! C. K
Major heading, 主辞标目
" L. b+ W9 m7 _6 A% VMarginal density function, 边缘密度函数. L" f, E* g( n$ m) M9 @
Marginal probability, 边缘概率9 s5 ]% U! S9 e
Marginal probability distribution, 边缘概率分布( }- p" N+ @, h1 h' V5 T& p+ e! C
Matched data, 配对资料 H9 G6 \$ f a( L; q
Matched distribution, 匹配过分布
) B) H. |& E6 ^. P% h' n* H' |Matching of distribution, 分布的匹配
) x/ d& s; u7 R& D) m; FMatching of transformation, 变换的匹配
# ~6 W7 k. o% ^+ a6 j {3 sMathematical expectation, 数学期望
6 ^% i8 N& J4 i/ E! [- U' X; H: Y$ zMathematical model, 数学模型2 P u5 D+ J4 H" u2 Z9 a3 K& S# I
Maximum L-estimator, 极大极小L 估计量/ R. f) U, }7 x* E. n8 Y+ B
Maximum likelihood method, 最大似然法( G0 `' ~7 J6 Z) A) N
Mean, 均数, B5 F# n- O8 X+ i0 W0 `/ L& T2 I5 e6 `
Mean squares between groups, 组间均方6 Z. b' r. M4 D& R
Mean squares within group, 组内均方
( `; X1 ]0 b! K0 Z) K" pMeans (Compare means), 均值-均值比较: @8 Y& A. V2 B5 b4 A" e! y
Median, 中位数
0 x: _! k4 V. j& x4 YMedian effective dose, 半数效量3 \( q5 I3 l2 d( h \
Median lethal dose, 半数致死量$ m. v" K V+ N
Median polish, 中位数平滑) N* Z5 y. L9 `5 M
Median test, 中位数检验
( h( n# U$ |' |9 d" J2 _Minimal sufficient statistic, 最小充分统计量
, a+ B( F3 @4 bMinimum distance estimation, 最小距离估计
1 F O, n2 x! i' P1 LMinimum effective dose, 最小有效量) U5 @/ d# {' U3 ~1 ~8 a1 r
Minimum lethal dose, 最小致死量
Y5 d7 o+ s4 {/ R3 l# _9 W: H- ^; yMinimum variance estimator, 最小方差估计量
' y+ D' |5 Y4 x$ U! H' NMINITAB, 统计软件包
9 U. x8 r8 y0 K) C( AMinor heading, 宾词标目1 K0 }+ }; \9 R1 i
Missing data, 缺失值3 g6 d& ]6 ~3 p2 n+ L. A
Model specification, 模型的确定$ q+ \# R! |4 e
Modeling Statistics , 模型统计
4 \; g9 [( M# B9 QModels for outliers, 离群值模型
! A X6 w' G0 f) ]Modifying the model, 模型的修正4 |& L; a& D% T( ^7 {4 l; x
Modulus of continuity, 连续性模2 T: ^/ U5 {4 b+ |
Morbidity, 发病率 # S F/ T s4 x7 X8 {( q4 ^! t' @& o
Most favorable configuration, 最有利构形
$ W, ]. n* E& _9 zMultidimensional Scaling (ASCAL), 多维尺度/多维标度
8 ]" R* H5 r8 {; s" f6 d& j* ]8 h. lMultinomial Logistic Regression , 多项逻辑斯蒂回归0 A: W/ m1 A. z( |
Multiple comparison, 多重比较
1 u. K3 d6 R! M" wMultiple correlation , 复相关+ G+ J2 I) z |8 {: ^
Multiple covariance, 多元协方差0 L/ B' b, z6 [ s: l
Multiple linear regression, 多元线性回归9 k1 O9 S* g/ G# I# D* F3 V
Multiple response , 多重选项6 n$ w7 R9 I. k1 }* i+ \3 m$ w- @) Q; q$ S
Multiple solutions, 多解# \1 ^# f$ }% v9 ~7 i4 h
Multiplication theorem, 乘法定理
' h% u! t8 D3 b5 ?" ~) T6 j3 D) jMultiresponse, 多元响应9 Z0 b; |3 p# u7 X3 M+ c9 R- I
Multi-stage sampling, 多阶段抽样! z. ?) ]) `4 h' o. ~5 @# ]8 X
Multivariate T distribution, 多元T分布
* q* O+ Z J. u' m8 _& C0 p( N1 nMutual exclusive, 互不相容
, G c- ^6 C- o* A I* @+ S BMutual independence, 互相独立, s' K6 I. X0 k/ }- f. |7 b+ e* ^
Natural boundary, 自然边界3 `! V, Y+ k1 L7 D2 y+ }" |9 C
Natural dead, 自然死亡; a! g5 I; u0 Q# n. H
Natural zero, 自然零, r: I. _( Z1 Z& P! N4 V% k
Negative correlation, 负相关- [+ J4 k( T: R V* y; V: A* u
Negative linear correlation, 负线性相关
/ d" J% ?- s( \Negatively skewed, 负偏
( S4 ]7 x w+ C8 \" oNewman-Keuls method, q检验2 z# q% i$ u6 F% V! o' O
NK method, q检验
* u! d6 T1 T! ~4 i3 ?$ `& TNo statistical significance, 无统计意义
2 n' Y: N$ V% e, ^2 v, f V5 `4 k2 QNominal variable, 名义变量
, L1 k J6 o. F/ `$ Q- PNonconstancy of variability, 变异的非定常性
$ Z c- L' p' r7 I2 e. [1 JNonlinear regression, 非线性相关
3 Z Q" K/ Z. `: ?6 C& ONonparametric statistics, 非参数统计
8 e, y, {! H$ eNonparametric test, 非参数检验
7 t' p0 @- l) @. p4 J# S, Q3 r& tNonparametric tests, 非参数检验+ Q; K, G* H# b5 S' d
Normal deviate, 正态离差
/ r" @1 ]# B2 p. h. P- cNormal distribution, 正态分布
& Y4 I' [8 X2 bNormal equation, 正规方程组/ {5 Z7 ?: i+ A' ?% T) u' J( U
Normal ranges, 正常范围
% v; t: g S. d* j0 _% P: qNormal value, 正常值5 `* n3 w) T/ H* d# ~6 j" F
Nuisance parameter, 多余参数/讨厌参数( U8 H1 ~9 T! s1 q+ Y
Null hypothesis, 无效假设
1 {: Z7 Q. Z/ K |- rNumerical variable, 数值变量
1 j) h% _( ^$ R7 S- _7 N# }! zObjective function, 目标函数
! w4 M4 z: I. p/ W" }% qObservation unit, 观察单位! q" d2 s3 p, ]
Observed value, 观察值
+ ?5 K& ? |" T; [6 }( KOne sided test, 单侧检验
) }5 ]0 W- y- H3 QOne-way analysis of variance, 单因素方差分析
% w* z8 c2 s) x4 {Oneway ANOVA , 单因素方差分析; c$ g0 B6 p5 K% Y" R& C: g
Open sequential trial, 开放型序贯设计+ @ U, E4 @! @/ J
Optrim, 优切尾
: v0 Q6 @2 A/ i4 ZOptrim efficiency, 优切尾效率* A, t- F `2 l
Order statistics, 顺序统计量
6 G- s: L/ a$ \: Q/ d& cOrdered categories, 有序分类% Z; r8 o( d# _9 o5 n
Ordinal logistic regression , 序数逻辑斯蒂回归
7 N4 |; n2 k$ N! g, N" f1 p( Y8 {Ordinal variable, 有序变量
8 A/ |, I, w& ^+ p' nOrthogonal basis, 正交基
8 T" v( M! P& Q( U" j# U# {5 @3 vOrthogonal design, 正交试验设计
; k" h7 i! m9 N* H, O( o3 G* U5 \# q0 COrthogonality conditions, 正交条件+ h/ O) `3 w" d; d: Z
ORTHOPLAN, 正交设计 ) J5 W; W- y# W8 L
Outlier cutoffs, 离群值截断点& \3 D" D& R6 X; w& Z
Outliers, 极端值5 d( G1 k- V. U% z6 i0 o8 z5 Q- }& }8 ?
OVERALS , 多组变量的非线性正规相关 2 {! j" C- F/ Q4 ?) L- m
Overshoot, 迭代过度
1 g" p- T: H; B `$ c1 ]/ m NPaired design, 配对设计
5 G7 \6 H; Y) Z' n" {. iPaired sample, 配对样本( ?1 S* T1 o! D* b% h5 X( ~( }
Pairwise slopes, 成对斜率9 Z+ ]# h2 U# p0 X: H( x
Parabola, 抛物线5 K. X; A: [9 d' i
Parallel tests, 平行试验. l: _; \& [) a
Parameter, 参数
+ g+ Z1 n8 @ m7 F+ LParametric statistics, 参数统计
, n' J( f5 P4 S! j, A+ |Parametric test, 参数检验
# L7 v8 y" s3 V% [' f2 tPartial correlation, 偏相关 }8 ^; w: V, e! Y: W
Partial regression, 偏回归
' F% o0 c5 D& ^Partial sorting, 偏排序
9 V% w$ q4 m; M+ \8 X/ APartials residuals, 偏残差
0 R$ [! x4 b6 p! ~+ bPattern, 模式
/ s7 Z$ Z* j. L( Y7 P8 ]Pearson curves, 皮尔逊曲线
/ k! V4 j: n# H& q% jPeeling, 退层
7 m* k' t# X6 F: R% w+ ]Percent bar graph, 百分条形图, p+ `& }( Y' U! g5 [1 ]
Percentage, 百分比
0 {7 R8 j1 K0 tPercentile, 百分位数
1 t0 U' ?9 f! ^( {" tPercentile curves, 百分位曲线
5 b4 [' X, U: TPeriodicity, 周期性# b4 F8 f7 h9 }7 U7 {4 f+ E
Permutation, 排列
8 w' G3 N- u4 T; MP-estimator, P估计量: Z8 c: h$ s) {
Pie graph, 饼图2 j" P7 U( b y" Y% X
Pitman estimator, 皮特曼估计量
?3 }2 R% b* [8 l- g7 H4 d0 u% }Pivot, 枢轴量4 l0 C: a7 s4 |* H/ n- Y) {
Planar, 平坦
+ W/ Z* A0 v( b$ SPlanar assumption, 平面的假设# w# t- F/ L0 Q3 X4 T
PLANCARDS, 生成试验的计划卡
1 A+ g3 J2 s+ F* a6 sPoint estimation, 点估计& g2 y1 b. s+ m# w+ n
Poisson distribution, 泊松分布" _& x) }2 ]$ E+ S! [
Polishing, 平滑8 f8 F- h1 @3 z
Polled standard deviation, 合并标准差
1 L9 E. K" W# u- n' J5 VPolled variance, 合并方差7 c* h3 [; P1 K8 s8 C: L8 w+ B
Polygon, 多边图) ^" ?+ r" s0 R* W9 T* b) l
Polynomial, 多项式
# p& r! }3 ?3 K$ UPolynomial curve, 多项式曲线# J& m, O$ c6 n3 u y" q+ S
Population, 总体& T* O3 X: y8 s2 k) K4 Y
Population attributable risk, 人群归因危险度4 E) N2 @9 k2 c+ g
Positive correlation, 正相关
& i' M _+ y u3 UPositively skewed, 正偏
0 Q9 H, S4 ^$ S" ~* hPosterior distribution, 后验分布
* l- d& n! o9 @$ |) Y* g( BPower of a test, 检验效能
# j! K i: a+ G" |- S) fPrecision, 精密度
, x* B2 c M+ q) ?: KPredicted value, 预测值
y' b9 I8 C" `, o' ]" R. _ FPreliminary analysis, 预备性分析
7 Z& g2 X, N$ Y1 L, APrincipal component analysis, 主成分分析
+ `5 `4 P7 M! x% w( G- S BPrior distribution, 先验分布
2 {% K2 a* l0 I9 L0 APrior probability, 先验概率5 e% T2 @/ F# H7 m, ?+ g1 N4 i5 K
Probabilistic model, 概率模型
7 s' r# J+ x) r% l1 Q' G1 G8 Pprobability, 概率
9 ?; }% p' T2 p* w. FProbability density, 概率密度
' a0 n+ T& z) P: g7 u+ q& XProduct moment, 乘积矩/协方差0 M* j$ \8 i8 U) y
Profile trace, 截面迹图" ]+ f0 n; H+ P- k/ V
Proportion, 比/构成比# Z; r; X! r6 r4 w; g6 g" w
Proportion allocation in stratified random sampling, 按比例分层随机抽样/ W0 }' \7 k/ k E, S+ U9 Z
Proportionate, 成比例) r. t% v x {/ D! A
Proportionate sub-class numbers, 成比例次级组含量
, d; S. _* @ ~# u a0 k! t! IProspective study, 前瞻性调查
+ A- F3 A/ ?: g8 pProximities, 亲近性 * n! o( ?9 k6 i7 S. S& \
Pseudo F test, 近似F检验% f4 y1 h- T0 O A
Pseudo model, 近似模型
2 l1 L5 q. I; B EPseudosigma, 伪标准差
, ]5 f! A. `* ~; {" R& K& VPurposive sampling, 有目的抽样! A& [' j& D1 J. L+ H6 z. }+ F
QR decomposition, QR分解( C9 _* c4 g$ `# H2 B; G! J3 M" A
Quadratic approximation, 二次近似7 p; Z+ T: D, ]% D( q* w
Qualitative classification, 属性分类
( F7 S0 U/ W; z2 QQualitative method, 定性方法
" x; b. ^( w, i' gQuantile-quantile plot, 分位数-分位数图/Q-Q图
% P% ^$ e( c1 Y! V2 A& UQuantitative analysis, 定量分析
7 T7 Q; D/ \$ S( K* J: d3 PQuartile, 四分位数
" k! A, W; G+ ?( iQuick Cluster, 快速聚类, a* W. o1 z" h3 |$ V9 Z
Radix sort, 基数排序* p" ?" g: e8 u- [% a i0 b
Random allocation, 随机化分组 X3 i$ j$ y% {' m
Random blocks design, 随机区组设计
" V6 Z6 ~! A& K% N- s2 K3 X9 xRandom event, 随机事件
5 h* _8 P u) ~) J1 j5 zRandomization, 随机化
3 h3 i$ p# V- y2 }. pRange, 极差/全距
8 p0 ^2 A- V5 x8 ^( R8 G8 y1 oRank correlation, 等级相关
( Z2 [0 }! l/ R: Z- P5 fRank sum test, 秩和检验7 O' M, t/ w! ~! h/ j2 o- @
Rank test, 秩检验9 h9 E* D, X4 [* h
Ranked data, 等级资料
$ Q5 `: Y7 U! _; J% O& zRate, 比率
* r/ ?* ]3 ]; I3 tRatio, 比例$ a- |6 f; W" ]
Raw data, 原始资料
" Z, g& V( i4 t Z7 tRaw residual, 原始残差% s3 M6 h& @6 f9 b+ `5 h' D2 ~
Rayleigh's test, 雷氏检验" I) E+ o; G2 Z9 Z t. G
Rayleigh's Z, 雷氏Z值 * m" g( |* {6 ^( d6 F
Reciprocal, 倒数$ s3 r9 a5 c6 w; |" u! H
Reciprocal transformation, 倒数变换# f; {! o( i2 J' }/ n) v: }
Recording, 记录* y- ^+ n# t! v6 J& R5 S& L
Redescending estimators, 回降估计量
0 z% x' _) l4 SReducing dimensions, 降维% J; Y; |" ?* O4 `
Re-expression, 重新表达9 A# o X* x; J5 {8 o3 y. x
Reference set, 标准组+ a0 u! N) s& Q/ O# z
Region of acceptance, 接受域% V2 Y) j2 S5 |/ {- c. q' i+ N
Regression coefficient, 回归系数! o7 Y0 N8 C; `+ t, e0 T) [* U
Regression sum of square, 回归平方和3 V6 {8 T o; q+ `+ B
Rejection point, 拒绝点5 R+ l, U5 T; c( w
Relative dispersion, 相对离散度& a5 E, @) c) J& f3 W$ ?
Relative number, 相对数
5 Z6 b4 S$ T1 W- u* aReliability, 可靠性$ ~, o$ ?/ Y& p
Reparametrization, 重新设置参数
% I1 F3 C1 ]% R: W5 s C5 CReplication, 重复
! F! P: C* H, U- V& N; P8 kReport Summaries, 报告摘要6 @1 f; t* }& `2 q
Residual sum of square, 剩余平方和, q. w! m$ E+ y& g
Resistance, 耐抗性, ?0 k, D2 E9 B r2 T6 b2 J* x3 k s
Resistant line, 耐抗线6 [4 H# U$ x, u
Resistant technique, 耐抗技术% c* k5 Q3 P t2 L7 P' z7 a
R-estimator of location, 位置R估计量
- b, O8 _+ O1 W1 ?R-estimator of scale, 尺度R估计量. g$ X9 G# c# G' I
Retrospective study, 回顾性调查! G2 |6 Z2 U- b3 E# ?/ }6 i3 [
Ridge trace, 岭迹9 P/ [1 I7 T3 j2 I! @9 ~
Ridit analysis, Ridit分析8 s% a0 D/ L9 v5 j R+ N+ z8 n: P
Rotation, 旋转" ~1 J9 H: w& u+ ]+ Y. W
Rounding, 舍入- r0 t/ U) e4 w
Row, 行1 {1 G( n" y& [6 C
Row effects, 行效应& d* M2 O. o% Q
Row factor, 行因素( Z4 u% d$ a8 i/ d% ] h
RXC table, RXC表
. e* q. {- J# A$ z/ ESample, 样本) l" d" t6 l4 @: v; ~0 ]
Sample regression coefficient, 样本回归系数
* @- i# d( x- D2 r M6 J# |) `Sample size, 样本量 ?+ D# ?. E+ v6 R$ d
Sample standard deviation, 样本标准差- c2 D4 i* `' F1 s. n5 K0 f6 y
Sampling error, 抽样误差
6 x$ T4 G' Y: n$ j) Z; I1 Z# lSAS(Statistical analysis system ), SAS统计软件包
( \9 z$ m8 t* MScale, 尺度/量表$ \& K* e' I: O0 U, H5 e
Scatter diagram, 散点图' i/ ]1 s& T* @% o$ G
Schematic plot, 示意图/简图8 O5 N. p: {2 o7 ]( n P1 `- V
Score test, 计分检验
" A q, ]2 P- O0 P# ^% PScreening, 筛检0 x! J {4 i! T* |% x4 V8 y' d
SEASON, 季节分析
' \5 ?" O/ a9 f& p& eSecond derivative, 二阶导数
d: k- |; L$ v1 w5 H' X! F vSecond principal component, 第二主成分/ C8 v. f# \) k
SEM (Structural equation modeling), 结构化方程模型
0 q9 c: ?' V) h2 ?. Y& b0 X7 |2 j1 }Semi-logarithmic graph, 半对数图
1 \0 U& q6 E3 F: X7 F- ZSemi-logarithmic paper, 半对数格纸
5 \: ?; j# K0 W' Y3 B6 [Sensitivity curve, 敏感度曲线
5 }: O o- F2 v* x5 s* NSequential analysis, 贯序分析3 P5 c, I" N' w( c6 V7 I
Sequential data set, 顺序数据集
$ a9 {$ A {$ |5 L% O# N" uSequential design, 贯序设计
* ]. P/ c) Z: rSequential method, 贯序法/ J) A' D+ H: Q, {9 K5 U
Sequential test, 贯序检验法! ?% X. W; r) F0 ?$ _; g7 t. h( m
Serial tests, 系列试验7 x& E3 x( I6 M0 F% F
Short-cut method, 简捷法
2 F; X1 J+ M! A& K8 fSigmoid curve, S形曲线
/ b& }! h5 K& t' V& d4 {% h" P. GSign function, 正负号函数8 T. A, T( x2 x# J
Sign test, 符号检验/ z2 E/ m* F- ^1 z5 z. l
Signed rank, 符号秩
$ e% S* @* y* g1 [, [$ Q gSignificance test, 显著性检验0 W/ N2 m6 L& ?
Significant figure, 有效数字
, T) E6 ^* `1 ?1 \2 Y" j# o* e+ }Simple cluster sampling, 简单整群抽样% @5 T# N" E& z: j
Simple correlation, 简单相关% i" @/ N4 r3 z$ A
Simple random sampling, 简单随机抽样 `8 n* w. k3 I5 q4 @
Simple regression, 简单回归. E; f3 ^ r) a- f& g3 `
simple table, 简单表
$ l& A# {& k) z5 r' W9 ~Sine estimator, 正弦估计量
T9 L! X: J m% K2 CSingle-valued estimate, 单值估计( F% |& c ?' Q! g- }" i
Singular matrix, 奇异矩阵3 p6 O# O6 x" [- E
Skewed distribution, 偏斜分布
j8 V& ^0 i. o( P9 D3 q CSkewness, 偏度
2 D0 d+ E& W9 U+ sSlash distribution, 斜线分布
0 U. [+ V5 a9 @: E4 s$ aSlope, 斜率$ [& i& i4 R; k
Smirnov test, 斯米尔诺夫检验
7 S$ ]4 g# I, l* r( jSource of variation, 变异来源, [2 z' Y% j! Z# [8 z) A
Spearman rank correlation, 斯皮尔曼等级相关# ? O/ v' }1 C S' o
Specific factor, 特殊因子2 \' a# t, w: P n0 A4 E
Specific factor variance, 特殊因子方差, s2 u0 e* g. }: }* e! X; ?. U
Spectra , 频谱
& J8 B$ s$ m% ?( l1 b; nSpherical distribution, 球型正态分布
5 C7 X$ L% q) m- Z' z+ g tSpread, 展布
# K7 p" f- I1 k' x" Z v) Z0 iSPSS(Statistical package for the social science), SPSS统计软件包
) F/ i/ V+ ^# p! }: t. GSpurious correlation, 假性相关$ J) v0 K) d9 A, J, c3 y2 U4 h
Square root transformation, 平方根变换
2 l. L- d5 H' V. _Stabilizing variance, 稳定方差. m* l/ K& ?( }% n q1 w
Standard deviation, 标准差
3 @+ z9 |8 S! r1 b1 [Standard error, 标准误
4 Q4 c/ Y( o3 @3 m: ~Standard error of difference, 差别的标准误
+ J/ \0 W$ J( N9 W8 S8 ~. NStandard error of estimate, 标准估计误差
6 H6 w. b& V/ U! J* U" AStandard error of rate, 率的标准误+ I1 f, M% r8 q$ {
Standard normal distribution, 标准正态分布" J6 I2 E. S. G8 ?1 N
Standardization, 标准化
3 I6 P( Y* g, FStarting value, 起始值* U: S4 O9 y0 S; s" v: l
Statistic, 统计量
) I9 {9 P( h: d6 zStatistical control, 统计控制9 Y6 `3 j& c0 m' A
Statistical graph, 统计图# ]0 E& e% I& t3 }( P( y
Statistical inference, 统计推断' @9 z& x- |. S! x
Statistical table, 统计表2 h8 p ^+ T, B# E) |
Steepest descent, 最速下降法5 U" `- f# e; T1 d8 V
Stem and leaf display, 茎叶图
# t2 X' c1 L: L- ?, `7 X) ]Step factor, 步长因子1 E/ r$ X9 {# x7 @
Stepwise regression, 逐步回归
! x7 X9 J9 i, `# E; j3 Q! zStorage, 存
: ?) x; G# s! PStrata, 层(复数)
5 V) M) U% [0 y% y1 KStratified sampling, 分层抽样
3 n. W3 b+ w N4 \Stratified sampling, 分层抽样* U# d% g! U! [- {' {
Strength, 强度4 ~& P, u8 \$ d/ Q" h$ F, Y t# L, c
Stringency, 严密性
# {6 i j5 [( E& }) _4 iStructural relationship, 结构关系6 f9 r2 I( V2 x8 y/ w$ b+ v$ R
Studentized residual, 学生化残差/t化残差$ w( K! M* W7 ^$ a+ l) i4 o
Sub-class numbers, 次级组含量/ _+ _9 [- J) ?- w8 ~+ |- ^
Subdividing, 分割
) x3 W9 |, ]6 S* Y9 j: Q, _Sufficient statistic, 充分统计量- `# |% p1 p9 M3 ?, C7 j, k
Sum of products, 积和
6 p9 k. N; @6 N% VSum of squares, 离差平方和
' l3 z! n2 X. tSum of squares about regression, 回归平方和+ O& Q: Y0 E+ q4 Z( `
Sum of squares between groups, 组间平方和
6 h/ K! b2 ?* F# ^& mSum of squares of partial regression, 偏回归平方和( \/ W. o; q& T( _0 v# t
Sure event, 必然事件
8 R* P# a! x' L& e; I/ ~! kSurvey, 调查
2 E" o% E3 S- A5 q! I0 d5 y& \Survival, 生存分析 W: a: w$ M# S5 e8 q
Survival rate, 生存率
5 b9 G( E% {3 w8 a3 @" B9 S! dSuspended root gram, 悬吊根图/ U, ]* |) [7 x. M+ U& \' ~* Z
Symmetry, 对称$ H' M: g+ E* L0 B
Systematic error, 系统误差
) f: K& E! w$ q" S9 e, k5 _+ Q3 HSystematic sampling, 系统抽样" A. Y- }' i/ j6 [% U
Tags, 标签
6 k: V' y6 k1 @3 vTail area, 尾部面积9 w; B' r# G, y7 g/ @
Tail length, 尾长/ z2 }7 @* F6 @% G
Tail weight, 尾重
# \$ H d" t( u# X P1 ITangent line, 切线* K* c. R4 _/ w7 a
Target distribution, 目标分布
7 {4 X& n- }9 m) X1 N1 hTaylor series, 泰勒级数! r0 u. V4 o' ?4 `
Tendency of dispersion, 离散趋势
- I" Q0 \- f- j( K( t! \Testing of hypotheses, 假设检验/ p$ F( l1 l2 u" G
Theoretical frequency, 理论频数7 T/ @0 b" B& w" h
Time series, 时间序列
$ s# j- A0 v. A; I, c l" PTolerance interval, 容忍区间
4 E! @( {# p) j/ W( TTolerance lower limit, 容忍下限
- l4 y0 c, g2 B* u( P$ C2 iTolerance upper limit, 容忍上限. g6 Z. g5 Q1 l
Torsion, 扰率4 W8 j) r; ^; Q% {
Total sum of square, 总平方和
2 d9 W( G9 S. F) t6 r: Q5 I! R8 yTotal variation, 总变异
6 L! P1 C; L+ `! S) j+ wTransformation, 转换: e7 I& I8 u0 c7 u7 Z6 g8 ]
Treatment, 处理: z7 ?, a0 Q5 \/ H" P
Trend, 趋势
: h+ T. V+ J/ X1 Z6 qTrend of percentage, 百分比趋势
$ J0 T7 ^. y2 HTrial, 试验& r0 c1 `) S8 Y3 i; H
Trial and error method, 试错法
' d. y9 l* Y2 `/ q- kTuning constant, 细调常数
1 e% k, A+ F; z, r$ t5 V: [" BTwo sided test, 双向检验
! e6 j- m% ]3 [& b5 j' xTwo-stage least squares, 二阶最小平方. |) }1 U/ |5 c w9 T' }( I
Two-stage sampling, 二阶段抽样. w9 O3 K3 d$ n6 q# {
Two-tailed test, 双侧检验" Q7 b% F+ X+ X6 |3 v! x5 V9 e
Two-way analysis of variance, 双因素方差分析
# c* F1 P' Y" L: L3 ]/ q0 eTwo-way table, 双向表: B$ f/ y2 l( _8 k3 N6 o
Type I error, 一类错误/α错误
& ? [# p' T) K% C+ ZType II error, 二类错误/β错误
. |! X( h" m7 V, w5 Z0 q: BUMVU, 方差一致最小无偏估计简称/ A1 ? ~* w4 [: }0 _
Unbiased estimate, 无偏估计
" ~# n. C4 v- T& R1 bUnconstrained nonlinear regression , 无约束非线性回归
* }0 h6 r: j5 o* x. ]+ ?. pUnequal subclass number, 不等次级组含量
$ b% d/ p. I. ~* ]& \# bUngrouped data, 不分组资料, n* v: l e% e0 D8 o
Uniform coordinate, 均匀坐标0 K# a' X" U% y. z
Uniform distribution, 均匀分布; ?8 T6 u) g. }0 n* P. y% b
Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计
+ `% T) n2 d4 d, C- @# qUnit, 单元
! K& T N; {, m. P3 M P8 uUnordered categories, 无序分类
' |4 [ [* H4 y; J* \Upper limit, 上限
) n- g( e3 V+ f" k; X" I# M7 t/ |Upward rank, 升秩9 l2 y6 N+ ^" ~
Vague concept, 模糊概念
' ]1 r- [( V' R3 eValidity, 有效性
, V# s: o r6 W$ i/ E) L+ Z, x- I" H( GVARCOMP (Variance component estimation), 方差元素估计$ h2 p3 Q! P3 {
Variability, 变异性
4 K+ A- O9 Z) f0 ] l+ PVariable, 变量/ w& f @5 j8 n B) q& B* r1 Y; i
Variance, 方差
* W& Y! ^) @: HVariation, 变异
+ D$ D; Z$ H0 P; t- E+ {Varimax orthogonal rotation, 方差最大正交旋转
) j8 k) p3 x/ b$ e! z! m! b. sVolume of distribution, 容积+ @; V' M. j* S. f1 U! f) r
W test, W检验: f; L M1 s( q/ s( A8 r4 V
Weibull distribution, 威布尔分布
# l# b& q: W* r# d3 KWeight, 权数 J8 u4 `7 l) u- p
Weighted Chi-square test, 加权卡方检验/Cochran检验
) w1 u0 R G& ^, z o" wWeighted linear regression method, 加权直线回归: P5 B8 ], M1 Q- r
Weighted mean, 加权平均数
# P. H8 K$ F. Y) H" o/ e1 a& IWeighted mean square, 加权平均方差) z. u. X& v( M3 p
Weighted sum of square, 加权平方和8 n/ j7 \- `, b% t- R, ]
Weighting coefficient, 权重系数
2 C2 [. k4 o% I+ k/ lWeighting method, 加权法 / a M5 @$ n4 p
W-estimation, W估计量
6 K; B: g( g+ @, m8 wW-estimation of location, 位置W估计量
4 O/ J: p7 d7 JWidth, 宽度% _! D/ ? k1 L1 _7 u
Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验
. X% y! R, y' J' X# G' yWild point, 野点/狂点; O' h" D2 f7 F/ p
Wild value, 野值/狂值
9 b& d8 J' E4 z; t9 NWinsorized mean, 缩尾均值; h( R. V; ^; L6 i0 O
Withdraw, 失访
( k* O- z9 {/ z$ P8 EYouden's index, 尤登指数0 N3 d; C2 f, g) I& o5 Z: o( P
Z test, Z检验- u+ |# N% x8 ^' T
Zero correlation, 零相关! |( q6 n! l: d) g+ b
Z-transformation, Z变换 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?注册会员
x
|