|
|
Absolute deviation, 绝对离差
}! t+ {0 c' O2 PAbsolute number, 绝对数
b/ r. H# h$ ]5 x5 d3 T) w6 AAbsolute residuals, 绝对残差
; V/ J, Y& x' ^) }/ Y2 q$ mAcceleration array, 加速度立体阵( e5 L" l+ W3 n
Acceleration in an arbitrary direction, 任意方向上的加速度
0 k f- C$ w4 aAcceleration normal, 法向加速度
* y+ u; H6 `8 iAcceleration space dimension, 加速度空间的维数& F1 q2 X" l. s+ S2 t# t
Acceleration tangential, 切向加速度9 y% C9 I; J/ G0 Z- F8 ?
Acceleration vector, 加速度向量7 o1 T$ J# d& h; D
Acceptable hypothesis, 可接受假设' Z0 p* \% S/ S' L! V5 Z
Accumulation, 累积
9 u+ N( i1 g% j$ CAccuracy, 准确度2 k) a {) c9 [$ X1 D0 R
Actual frequency, 实际频数6 m# K! E8 s( W
Adaptive estimator, 自适应估计量
# u, l. x& j* O$ x [! a: L. \6 ^Addition, 相加1 \+ q; w- Z0 v9 j# @
Addition theorem, 加法定理% ]4 l: n9 ~( L6 [& a4 d
Additivity, 可加性* P( U4 h. f' f" Q% j7 u
Adjusted rate, 调整率
. o' t- X# z' ]" g% nAdjusted value, 校正值
: d+ G9 @) }/ z. AAdmissible error, 容许误差& l. o" t P; R
Aggregation, 聚集性3 O( K) d/ `% _4 \) K: J% V _
Alternative hypothesis, 备择假设
0 x& J' @' L3 \7 B) Y2 S$ hAmong groups, 组间4 d2 n3 {2 @7 L, i! w3 T2 E) v
Amounts, 总量 ?/ f a5 i3 [
Analysis of correlation, 相关分析
. f! F* s0 Z6 {% n2 L3 V6 RAnalysis of covariance, 协方差分析( { H# }" ]6 f: ?1 ]$ L
Analysis of regression, 回归分析
$ S! u1 \6 V0 @ ^6 kAnalysis of time series, 时间序列分析* @8 Q& K8 u$ E# I7 Q& [4 Z3 g4 X
Analysis of variance, 方差分析" ]3 i) T2 ?" K3 v) `; w
Angular transformation, 角转换
1 M2 ~! D: C. }9 `2 j, uANOVA (analysis of variance), 方差分析9 v" |( [, L8 l3 j+ e3 d
ANOVA Models, 方差分析模型
]% ]8 Q6 Q4 w6 ~2 ~2 yArcing, 弧/弧旋5 G% @& w. k& j4 g* X+ {0 @0 d2 d; D
Arcsine transformation, 反正弦变换0 C$ X$ X" M# T: g. v8 s
Area under the curve, 曲线面积
7 Y/ H$ r( d7 ~0 s, Y, M; aAREG , 评估从一个时间点到下一个时间点回归相关时的误差 ) B7 u @+ _. M$ V( o, U3 K
ARIMA, 季节和非季节性单变量模型的极大似然估计 4 k4 W7 ]4 g9 c- J, G
Arithmetic grid paper, 算术格纸
+ b1 j) D9 F" W: [& ^2 vArithmetic mean, 算术平均数
* i8 \* ~3 X( O$ \4 T) _- tArrhenius relation, 艾恩尼斯关系
8 K% I1 M3 T" HAssessing fit, 拟合的评估
( E3 R/ a' Y6 `3 h" }7 ^& j. pAssociative laws, 结合律' S7 p2 T" f( a
Asymmetric distribution, 非对称分布
1 j, Y& O& z$ ]) s/ VAsymptotic bias, 渐近偏倚0 v7 g8 a/ `" x$ f) f; g: P& s
Asymptotic efficiency, 渐近效率
$ B- P0 j5 ?/ Z2 A8 dAsymptotic variance, 渐近方差
4 _% w" }+ X; p7 W* N- B2 gAttributable risk, 归因危险度
: `" f4 H3 y# oAttribute data, 属性资料
- y+ D2 V6 A. Y) eAttribution, 属性8 a- U* V8 S+ R% p, H
Autocorrelation, 自相关
H& n7 v/ E% I( R! Z! {Autocorrelation of residuals, 残差的自相关
- W T, m2 B7 ^" B) X, d9 z. _Average, 平均数8 v; T8 n$ _( f: s; _
Average confidence interval length, 平均置信区间长度/ r# U) [1 Q' F( X6 n7 E
Average growth rate, 平均增长率; _# T, k( H( Z4 c: H6 |" V
Bar chart, 条形图, r. L3 |" }, C6 ^. p* n' B
Bar graph, 条形图, h: H- B: B6 q5 N; `
Base period, 基期9 r: X8 w: B7 R9 I4 T
Bayes' theorem , Bayes定理: h3 I8 k0 a$ O
Bell-shaped curve, 钟形曲线
/ y2 V& B) l# g: A/ n# ZBernoulli distribution, 伯努力分布9 s6 [( G; l' ]5 Y
Best-trim estimator, 最好切尾估计量- F1 g+ ^: e) q# R. _3 g6 H
Bias, 偏性, a3 b) C& Q3 k+ {/ @9 `4 I
Binary logistic regression, 二元逻辑斯蒂回归
2 g/ X: w# }' qBinomial distribution, 二项分布
2 d& A2 V# S' Y: Y5 ABisquare, 双平方
$ N+ E& N; p! j) fBivariate Correlate, 二变量相关1 C, N/ j$ h4 t! [
Bivariate normal distribution, 双变量正态分布
Y# B0 b. r: e: @# ZBivariate normal population, 双变量正态总体
- a2 Q0 Q! _3 C' M: b9 y9 D1 gBiweight interval, 双权区间- e, a V3 p1 B8 A# V' \
Biweight M-estimator, 双权M估计量( y. r, x2 g; y3 i9 @
Block, 区组/配伍组0 n" J. S) `7 f+ F, B
BMDP(Biomedical computer programs), BMDP统计软件包
* O1 Y) k5 U! q6 O1 ?Boxplots, 箱线图/箱尾图" E& A5 \: m, K, N
Breakdown bound, 崩溃界/崩溃点
4 v) d$ t! Z( i6 ]- I wCanonical correlation, 典型相关/ q7 ?) E+ j B0 J7 e8 `, Q9 b
Caption, 纵标目1 l3 m9 ]' t j! e( F" `
Case-control study, 病例对照研究
5 f/ P3 W* G7 BCategorical variable, 分类变量. `& q; [& g; B
Catenary, 悬链线5 u; b/ b, _/ n- N
Cauchy distribution, 柯西分布
4 Z6 m& ^4 Z: X0 H; O8 n: pCause-and-effect relationship, 因果关系
) e* }+ T. O# H! x, _Cell, 单元
) ^5 @" Z+ @/ f+ {+ dCensoring, 终检
0 p& _' |* K! y5 q8 gCenter of symmetry, 对称中心$ Z5 `: _1 I0 y5 q r: O$ W( u$ {6 N" }
Centering and scaling, 中心化和定标# W* H; O' t8 v7 P
Central tendency, 集中趋势 @9 L# G Q- O4 F. {7 J* h2 y, `
Central value, 中心值
; t5 T3 s: t) b& Z0 C1 W7 U$ r$ c5 zCHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测: o. t. y2 X/ x/ c* \
Chance, 机遇) B3 G" ^- M, a& O* a& n m
Chance error, 随机误差# \$ |; c9 |7 C! D% e
Chance variable, 随机变量
4 _$ L4 ^3 ]1 `# n2 O* y6 nCharacteristic equation, 特征方程
Y* {4 O$ X# v2 DCharacteristic root, 特征根
; @% [) L u! T4 r+ KCharacteristic vector, 特征向量
% B. s! J4 _9 f3 kChebshev criterion of fit, 拟合的切比雪夫准则
! d( l# K# w; ?7 vChernoff faces, 切尔诺夫脸谱图9 W8 o4 w6 J0 k6 E4 A
Chi-square test, 卡方检验/χ2检验
' K" x' ~2 g& e* d" M3 R5 i0 L& I& cCholeskey decomposition, 乔洛斯基分解! a: l3 d9 R" }" d; ?
Circle chart, 圆图
9 D1 a# g) J3 M, }( [Class interval, 组距) w# P; J( r/ g+ I7 h' i6 ^. B0 _0 q
Class mid-value, 组中值; O% L r: w; p( N
Class upper limit, 组上限( q' O$ [4 D K5 q; k; k9 K: {
Classified variable, 分类变量
& n! F! Q% L9 ^6 lCluster analysis, 聚类分析. D) T. A+ m) Q3 F5 S- X
Cluster sampling, 整群抽样
+ B7 @! R6 \* Z K" zCode, 代码
7 u) b; ]7 o) y2 Q' {$ lCoded data, 编码数据
9 D; n* v1 U) \. u' wCoding, 编码! F/ _0 T1 I0 A' q- ]5 Q' q) J( T. Y
Coefficient of contingency, 列联系数
2 ~2 `# N' p5 [3 R5 |7 @* vCoefficient of determination, 决定系数% c" c G9 I% U: s* q( ^ r
Coefficient of multiple correlation, 多重相关系数. l1 Z8 t V7 E+ d/ F
Coefficient of partial correlation, 偏相关系数7 o* W+ A. S( D6 H) p! x/ W+ G9 i: t
Coefficient of production-moment correlation, 积差相关系数
! E; T: R A/ f( UCoefficient of rank correlation, 等级相关系数
9 b$ o5 K7 v4 `' t+ q% t) _) i* hCoefficient of regression, 回归系数4 |. h6 N/ T! i, a& B) h
Coefficient of skewness, 偏度系数0 c, J: d, M' K2 B! Y4 \; }
Coefficient of variation, 变异系数0 T" i$ P: Q' ~( K1 P3 ]; X: Q
Cohort study, 队列研究
. S& s- K ]$ I$ K5 S3 P7 h# T6 lColumn, 列: K( T1 @* ]4 G. i* D, Y
Column effect, 列效应% n5 M" G, y7 Y
Column factor, 列因素5 @1 M: M" K y* H5 \
Combination pool, 合并& S, u3 e% Y0 x, U+ M% j' m7 r k
Combinative table, 组合表4 w) [- w, m1 X! L: x: @
Common factor, 共性因子; `& e; V& q1 W
Common regression coefficient, 公共回归系数" e( z; j4 C' w! a
Common value, 共同值
' d7 d# M; i. `Common variance, 公共方差
: f0 h4 k g0 u4 o% [Common variation, 公共变异
( e* A$ W$ N0 `# R: B# @Communality variance, 共性方差- @$ ^8 Y R; N2 l- l* ?
Comparability, 可比性3 U. v; @9 V% W1 s0 r
Comparison of bathes, 批比较2 J& ]& n' |. K6 l
Comparison value, 比较值
/ D. H( E1 a# F* L2 XCompartment model, 分部模型
# L7 e: U3 d9 Q- T1 I0 QCompassion, 伸缩0 N3 j; i$ ~8 y& {( x/ g E
Complement of an event, 补事件
" X) y$ |$ _# O7 U) D9 TComplete association, 完全正相关8 b) l9 o1 d p. y6 l4 }$ G
Complete dissociation, 完全不相关
$ A8 s$ t" ~3 x1 F6 XComplete statistics, 完备统计量* t0 q, L( i; J; n
Completely randomized design, 完全随机化设计
- L% J2 q( }& C$ Y( GComposite event, 联合事件
# h8 w! a) c. `3 d! zComposite events, 复合事件& B% Y3 y J, t* x0 ?# \
Concavity, 凹性
3 s& G# r |4 g0 u5 W0 CConditional expectation, 条件期望
' v3 r; A" c- ~; _5 s5 [. aConditional likelihood, 条件似然 D% P' S# P% K' A
Conditional probability, 条件概率+ E0 M4 l n1 T5 l: G b j
Conditionally linear, 依条件线性( U0 c- W' E( `$ Q* q v$ C3 N7 s
Confidence interval, 置信区间: c" Q$ V8 Z4 {+ y" V: N+ o
Confidence limit, 置信限
* ~% I% D) X; VConfidence lower limit, 置信下限9 b& U7 J8 _- G1 O6 Z$ E; h9 J
Confidence upper limit, 置信上限! C' b! e. x r, c1 E% Y
Confirmatory Factor Analysis , 验证性因子分析- O) _% F: k9 J" {1 f* ~& r/ P! V
Confirmatory research, 证实性实验研究
# O. k9 h! j; o1 D+ z0 n) CConfounding factor, 混杂因素/ L! I, \- ?+ d( f, w5 D* w
Conjoint, 联合分析' m7 T) E+ o4 [1 e
Consistency, 相合性
$ m0 i" K" t; G! YConsistency check, 一致性检验( e, @: J$ z2 S' g* S
Consistent asymptotically normal estimate, 相合渐近正态估计7 f$ x' o5 _- J
Consistent estimate, 相合估计- @& u6 {+ ?) ^/ \$ Z
Constrained nonlinear regression, 受约束非线性回归
2 o3 e4 y$ P/ p' X4 u& SConstraint, 约束' d. G' [7 \$ r* |$ f/ k3 H* v
Contaminated distribution, 污染分布
_6 t x7 r/ E" r3 lContaminated Gausssian, 污染高斯分布
5 U$ Z; C1 P1 Y2 w6 g' O# TContaminated normal distribution, 污染正态分布
3 |, J# W- j8 |8 l) z+ R& @Contamination, 污染' y0 q% y# Y* E1 _2 Z2 i! a) @; J
Contamination model, 污染模型: Z% i% n; ~$ ~
Contingency table, 列联表2 r @8 Z1 ?6 C0 B& d
Contour, 边界线
" q H/ a; d6 F9 ^/ y3 U- ~+ sContribution rate, 贡献率
! K% @1 u- D: S ?: {Control, 对照& L7 n8 A. ]8 J; Q6 [( P
Controlled experiments, 对照实验
! c! e& F, A) hConventional depth, 常规深度
3 ^! _% t3 W2 VConvolution, 卷积* T- \* p0 q. Z- p- {. ^
Corrected factor, 校正因子
0 r3 \# s: v& R" z4 I) N6 k5 K* pCorrected mean, 校正均值/ E# E7 ^0 ^+ O8 \
Correction coefficient, 校正系数" Q! Q; q* r" }
Correctness, 正确性! \* s+ u7 n }/ _
Correlation coefficient, 相关系数
, n6 o; Q) P6 J* @: q1 QCorrelation index, 相关指数: ?- g/ l* ~$ t h& F! t6 ?
Correspondence, 对应: ^- W* k! N0 C
Counting, 计数
1 H/ q6 n9 v2 e: P% k& c: dCounts, 计数/频数0 n. ?, `1 p W0 F a
Covariance, 协方差
2 k' s# M: k& l! ~9 HCovariant, 共变 2 \, z& N+ ~3 I0 j& P7 v
Cox Regression, Cox回归
* y( K/ b- E/ P8 fCriteria for fitting, 拟合准则
" [) a' w" q* MCriteria of least squares, 最小二乘准则2 ?7 E9 g3 A+ ]* e
Critical ratio, 临界比
D( e" ~5 ?' MCritical region, 拒绝域, u% Q% K1 N4 M5 |; n
Critical value, 临界值" y) a0 Q# _! q
Cross-over design, 交叉设计8 J/ s0 _3 d: V, E" W, Q9 ~* h' K4 B
Cross-section analysis, 横断面分析
" A* ?3 }" ]: _- {- V; TCross-section survey, 横断面调查1 i% k; K0 I, f. X% v4 s
Crosstabs , 交叉表
$ b# s. i) w- H6 e- u8 F4 ACross-tabulation table, 复合表( d: \7 }: t# z8 A$ V1 N5 z; ^
Cube root, 立方根
; G& a. ] V/ o& r8 B7 W6 KCumulative distribution function, 分布函数4 C2 ]- ~9 E9 i
Cumulative probability, 累计概率
% [+ m* U! j3 ~) ]# k9 F& CCurvature, 曲率/弯曲5 Z# s9 m! M- j6 w( W
Curvature, 曲率6 @% D, {5 E7 c" G# ]4 [) x' W
Curve fit , 曲线拟和
+ K: ^ ]; _5 w8 ^Curve fitting, 曲线拟合( v4 S' J2 ~! e
Curvilinear regression, 曲线回归& L5 h, G2 d8 b. A W2 M, h
Curvilinear relation, 曲线关系7 }/ _) _3 K. [; R0 K
Cut-and-try method, 尝试法
$ ~0 o# l/ _+ p& Q( ICycle, 周期0 l$ t" [& p9 n& K9 i' i) H
Cyclist, 周期性
8 k3 T9 S1 t0 m6 p8 F0 c8 lD test, D检验
* Y5 L/ Q: \8 TData acquisition, 资料收集
9 M" X4 u* p; n" xData bank, 数据库1 s5 W. d5 R8 Z/ U( ~' i8 [
Data capacity, 数据容量8 `3 E& \7 P' s4 a# A k
Data deficiencies, 数据缺乏
- R" z% J; |/ A6 UData handling, 数据处理
: k/ q0 \# p K2 v* P- a% YData manipulation, 数据处理3 y% K u+ t" ]. S! G
Data processing, 数据处理2 c; t8 g( z4 w9 N: F
Data reduction, 数据缩减1 ^" J5 \/ S/ h7 r
Data set, 数据集
9 Z* y8 E4 [1 U6 H+ z- vData sources, 数据来源7 M$ g+ R0 L: m' p0 e
Data transformation, 数据变换
* M# o* s9 y- }6 a( EData validity, 数据有效性5 Y1 r0 M& ^5 g* n
Data-in, 数据输入
0 M$ ^2 x: l7 Y' N; E& z5 FData-out, 数据输出5 M& h/ r0 v) y+ A
Dead time, 停滞期" K3 \& L" y: J! Y3 D3 F' G
Degree of freedom, 自由度/ m2 U/ u G i+ Q( d% ^! j6 G E
Degree of precision, 精密度
4 F" n* I/ ~( o# L, J2 ADegree of reliability, 可靠性程度
/ O# M8 s. T1 @" Q- G$ MDegression, 递减( B X) ]* a8 W' N) A1 M
Density function, 密度函数+ m) a2 W9 x% Q
Density of data points, 数据点的密度* q+ M3 W9 v# a" a3 {' ~
Dependent variable, 应变量/依变量/因变量
5 z6 ]3 t5 V/ E; `9 g4 mDependent variable, 因变量
6 ^' r! a) g. Y; v# H9 zDepth, 深度7 }/ Z$ W% i/ Z
Derivative matrix, 导数矩阵* v: Z) l0 r- a# T. @ f/ m+ X" t
Derivative-free methods, 无导数方法. Q' ~+ }8 J2 ^ O
Design, 设计
5 }- ?5 S' [3 S# m: {/ F6 oDeterminacy, 确定性
, n) H! M0 C1 P3 t, YDeterminant, 行列式- S6 z8 e- o; s5 ]6 G, Z1 Q) _
Determinant, 决定因素
, W1 w- _6 I% x. ZDeviation, 离差1 F( t* \% H1 b, Q# e
Deviation from average, 离均差
6 X% r7 H- p2 m5 h. y7 vDiagnostic plot, 诊断图/ p+ W0 R3 J0 w' @: u! D' U
Dichotomous variable, 二分变量' K7 y- w+ H; }: V& a
Differential equation, 微分方程
/ p# S# b. J, dDirect standardization, 直接标准化法2 f8 [7 C( B1 u R0 k, X
Discrete variable, 离散型变量6 O: }; b& U2 A5 `* U
DISCRIMINANT, 判断
9 F1 R. a2 p% n( SDiscriminant analysis, 判别分析& h5 m4 M. @+ C
Discriminant coefficient, 判别系数
. z6 M* N Q# a# j9 {* {Discriminant function, 判别值
" k5 t: s1 r% O" P" TDispersion, 散布/分散度0 a& E0 R8 W& l: U% h
Disproportional, 不成比例的5 [; i# J% `6 D# I2 v. k
Disproportionate sub-class numbers, 不成比例次级组含量
; c, c. b7 L6 z2 L' YDistribution free, 分布无关性/免分布
; |) {( a, S }Distribution shape, 分布形状
% i3 s2 ~% t3 fDistribution-free method, 任意分布法7 B; V- @( q) u
Distributive laws, 分配律" ^' v/ h% L- p: s# y
Disturbance, 随机扰动项
- h% f e1 |( ~) J3 c, m4 @& {9 X9 dDose response curve, 剂量反应曲线: k! O+ J) N4 a T
Double blind method, 双盲法2 x/ X2 |0 q( W* d0 M- E
Double blind trial, 双盲试验
- o( H5 p3 O* i7 K. J3 CDouble exponential distribution, 双指数分布
/ h9 y( S, b% r6 }6 HDouble logarithmic, 双对数
$ I0 O) C* k8 ~/ U+ Q) v6 ^Downward rank, 降秩
# f& r. y" p7 ~; g0 x& ]Dual-space plot, 对偶空间图
' h$ J% d6 ~, }4 ADUD, 无导数方法
# |. ~7 g' T, _0 o$ MDuncan's new multiple range method, 新复极差法/Duncan新法9 y+ A% g8 x5 h/ p+ y8 i5 { Z5 V( G3 V
Effect, 实验效应+ i5 u: K' E& t, g- t9 k8 }
Eigenvalue, 特征值1 Y+ D! e# Y; o
Eigenvector, 特征向量2 A; ]8 ?: W3 S8 K; q
Ellipse, 椭圆3 c4 l3 D& m& q9 f6 b0 A
Empirical distribution, 经验分布' K Y& |7 G8 M. `# \6 R, O( x
Empirical probability, 经验概率单位
2 m7 B0 E$ d& E7 fEnumeration data, 计数资料
9 q4 Z, ^7 F: l$ \0 M6 o+ _Equal sun-class number, 相等次级组含量
0 @$ g8 k6 \+ w0 N& N( l. S4 C, REqually likely, 等可能7 C8 g8 J% k# R
Equivariance, 同变性
6 m& I5 L ~( k4 a& Z$ DError, 误差/错误
+ e9 m3 {4 {' D% L" v) b- E5 MError of estimate, 估计误差
: r! |6 j( V: {+ ~7 kError type I, 第一类错误
8 }$ h3 g+ Q' X0 B1 n( F. nError type II, 第二类错误1 p- Y4 h0 _5 o0 T0 d
Estimand, 被估量
/ s; \! |4 ^: |+ [1 FEstimated error mean squares, 估计误差均方( h! ~' D6 q' \2 {- x- T/ S+ G
Estimated error sum of squares, 估计误差平方和( Q6 Q# X" e4 T" u5 i0 C
Euclidean distance, 欧式距离
: |" o) R; Y% Y2 b3 iEvent, 事件3 k+ X$ H2 c0 ^! R. B! H
Event, 事件
2 }6 d) D. \& O( oExceptional data point, 异常数据点
8 h5 ]7 I& R) M3 gExpectation plane, 期望平面9 m" e; `: O3 Y- P- v( R
Expectation surface, 期望曲面( A1 _0 s& |- \0 A% |) b Q
Expected values, 期望值
% D+ ? I4 C L7 P g: SExperiment, 实验2 d$ x; l* m4 J
Experimental sampling, 试验抽样
7 t$ r u( |* {( B N3 RExperimental unit, 试验单位
/ f( e9 v& N$ k U I& M9 `2 KExplanatory variable, 说明变量4 m Q+ D3 n1 X2 k+ E( {: O* ~
Exploratory data analysis, 探索性数据分析' }+ Z/ Z! c- K' c2 t
Explore Summarize, 探索-摘要# @6 D+ R0 C3 |0 o' L; M: ~5 U
Exponential curve, 指数曲线- s( l8 `4 A5 L; S
Exponential growth, 指数式增长
4 `- B0 D. g( D X: E" ^* O1 p: \EXSMOOTH, 指数平滑方法
' X* V# \5 e. }Extended fit, 扩充拟合
5 s: m% }' ^( W& ^( EExtra parameter, 附加参数' i( q/ m" [9 Y
Extrapolation, 外推法 c0 c( B$ x, ]3 |9 I1 ]0 R
Extreme observation, 末端观测值
6 j% I1 i2 x9 c: C0 U) \+ oExtremes, 极端值/极值
" g, K! t- R5 R; s9 p' o7 `F distribution, F分布! x; E& z- [' R, B+ H# e# q
F test, F检验
( I3 B' E' X9 QFactor, 因素/因子9 b/ j7 ]6 E# I4 H2 B; h
Factor analysis, 因子分析; T! f0 |- r, _% R) G$ }2 w. {
Factor Analysis, 因子分析
0 e$ o( o' S! p$ H+ B! [* A' UFactor score, 因子得分
. C0 R% U+ E5 j9 k; L* zFactorial, 阶乘: ^9 e" y6 g9 S! j x: D' @3 B
Factorial design, 析因试验设计
* x& G. z2 o I; T; ^3 D3 G. KFalse negative, 假阴性# P/ |! M9 ^0 g+ |7 z: X6 [! x
False negative error, 假阴性错误
+ Q7 R& `; `" B( NFamily of distributions, 分布族( l! F4 K3 [1 X9 f! Y$ U) B$ ~
Family of estimators, 估计量族! Y. i( w) P; g0 R& B, z X
Fanning, 扇面
5 q2 B" o- w2 H" N9 g0 `1 j1 h/ h0 OFatality rate, 病死率
4 j. A |# k% r% ZField investigation, 现场调查: x& {6 D: Z+ f& b% N* o
Field survey, 现场调查% |3 `! u, m+ W, e
Finite population, 有限总体
+ T/ Q5 U. U0 ?# }. p9 tFinite-sample, 有限样本
4 A6 y, r2 l0 _" ~6 sFirst derivative, 一阶导数1 T7 y+ [* x( m" ]; h
First principal component, 第一主成分
, c3 y: t8 i G9 AFirst quartile, 第一四分位数( Y# U* m# c+ f6 z
Fisher information, 费雪信息量' z+ V0 o' C ^* Y
Fitted value, 拟合值
8 [. ^# e( }! _; J1 g0 ^6 mFitting a curve, 曲线拟合
: B ~. T- W* V: Z; hFixed base, 定基0 ^ u7 O9 T- t, x; H/ ~+ w! a
Fluctuation, 随机起伏" n8 l6 U& `6 b, g" [+ }
Forecast, 预测' K" V% z' t- P. p! z& G4 T" V
Four fold table, 四格表
! f# p! S- b" u! YFourth, 四分点! |9 b2 B: f9 Q8 N& X
Fraction blow, 左侧比率! c8 V( K+ Q# f
Fractional error, 相对误差
, @3 G9 ?, y. X0 P% jFrequency, 频率
2 g2 q! ~$ y* q- l3 _6 F- Q6 sFrequency polygon, 频数多边图
1 `& p, ~7 j4 DFrontier point, 界限点7 r2 l* B7 W$ o! a9 A$ a# N
Function relationship, 泛函关系2 d, o5 v: b- i; I) ~2 e7 k
Gamma distribution, 伽玛分布
4 z+ R/ V: j. U4 W# mGauss increment, 高斯增量
/ A1 o# W+ S2 B: c vGaussian distribution, 高斯分布/正态分布
2 a+ j. D+ n1 w4 v( X( t0 d2 W9 [% ~Gauss-Newton increment, 高斯-牛顿增量% f. T" Z+ F B1 _/ ^( N4 W7 L$ G
General census, 全面普查
i9 ?% g( y' t8 b, TGENLOG (Generalized liner models), 广义线性模型
* A. I7 p3 o, L, @- j: wGeometric mean, 几何平均数6 Y% h$ v4 Z4 k# z( o
Gini's mean difference, 基尼均差
" L- Z& Q: b& s+ o* ZGLM (General liner models), 一般线性模型 6 @8 N( W+ F' }( m" E* O
Goodness of fit, 拟和优度/配合度2 u' O2 O. C0 J( r
Gradient of determinant, 行列式的梯度% {6 H, t* u3 W2 e, e- r0 Q
Graeco-Latin square, 希腊拉丁方0 t5 W& _7 k L) k, \* `& A
Grand mean, 总均值, v. T0 B$ Z, ?
Gross errors, 重大错误
: O( q: T( r( AGross-error sensitivity, 大错敏感度
2 Y" d' g" O% U6 \/ c7 I% Q/ FGroup averages, 分组平均
7 A# T$ M7 H2 ]( K, aGrouped data, 分组资料- p; H6 x! @8 o$ p* E9 `; w
Guessed mean, 假定平均数
8 _: l7 S5 b& [Half-life, 半衰期 T) y# ?' U9 s# A& z0 n
Hampel M-estimators, 汉佩尔M估计量, q4 A5 }6 g2 L" J7 X
Happenstance, 偶然事件9 E. Y& a$ K3 X* T2 e, v* X% I
Harmonic mean, 调和均数
) W1 w1 x4 V( tHazard function, 风险均数0 V$ z4 r# D- g+ d
Hazard rate, 风险率
, M. B9 `& ?4 ]; \5 qHeading, 标目
4 W) F1 \4 O: `% V1 aHeavy-tailed distribution, 重尾分布
; E( K# t. p' m* w' D1 T/ V/ WHessian array, 海森立体阵& x) d, p |7 s" P3 [) J+ \
Heterogeneity, 不同质
1 d i, @/ E: G8 c' yHeterogeneity of variance, 方差不齐 F, S% r- N a5 T5 @, e: I
Hierarchical classification, 组内分组
R, a+ D, N0 ?& aHierarchical clustering method, 系统聚类法% H6 r& Y$ E) s! \ I
High-leverage point, 高杠杆率点
6 g" @# H5 ~7 e. l- x" WHILOGLINEAR, 多维列联表的层次对数线性模型
* _6 y: X# f) `( hHinge, 折叶点
' R+ J9 W8 h; F' [# ?Histogram, 直方图
1 E0 \$ Z/ i6 J$ K' h/ OHistorical cohort study, 历史性队列研究
1 z2 M- e4 b e. K ~! tHoles, 空洞( M$ ?/ z# o% g! K; E" d
HOMALS, 多重响应分析& O8 C4 X" n" ^) z% h
Homogeneity of variance, 方差齐性
) U! n+ A) ~, C& sHomogeneity test, 齐性检验4 \8 H7 m6 }; y* D2 F* a
Huber M-estimators, 休伯M估计量
) E* }# @6 ^* M/ i( t: p2 j' \Hyperbola, 双曲线
/ d G# `# l' O; P5 ^Hypothesis testing, 假设检验$ y2 u. a& I( V. ]1 I/ [' J
Hypothetical universe, 假设总体
- Q a r5 K! e( {5 G) G; lImpossible event, 不可能事件
3 F- f+ l. U6 g8 u* Z8 ]$ {; M cIndependence, 独立性
( W1 s* A. i, @7 Z2 S0 dIndependent variable, 自变量
2 [ `5 p8 }; p$ i T" x; @1 vIndex, 指标/指数9 y3 q: ]" k! y! T8 D! D( y
Indirect standardization, 间接标准化法, X% u T) x* ]2 L4 \; v; [
Individual, 个体
+ v* t* X; P& cInference band, 推断带- Q1 H( c A( S0 ~6 f& x4 A0 T& U- t
Infinite population, 无限总体( n8 ^2 J: ^' j0 i# e c* a
Infinitely great, 无穷大
( W8 t% O( p, ~$ o/ \Infinitely small, 无穷小$ L4 U6 S( s5 x3 p# u
Influence curve, 影响曲线$ T+ o: X' x/ k- n1 e+ l7 x1 [
Information capacity, 信息容量
3 a \2 B* d: g6 D9 g# Y+ NInitial condition, 初始条件. Q2 P' U ?' M, w& Q
Initial estimate, 初始估计值
. u8 }' Z4 |8 o4 U; QInitial level, 最初水平& A: Z3 i F- k; W- v
Interaction, 交互作用7 T" e3 F1 E1 z
Interaction terms, 交互作用项2 `' r/ _0 g) y# s; y
Intercept, 截距
) R5 _3 h( A0 \2 [5 W# cInterpolation, 内插法
3 K7 V& m5 K5 ^1 B+ bInterquartile range, 四分位距, g6 B7 g8 b6 i- s5 o! q9 a
Interval estimation, 区间估计" r- @* j3 _3 Z2 W+ x- X
Intervals of equal probability, 等概率区间" u% ^- n p( I- v
Intrinsic curvature, 固有曲率6 Q) @; g( X1 Q2 c
Invariance, 不变性
$ W! D" y" K9 I% \, `Inverse matrix, 逆矩阵
+ O" _' g% O9 E$ WInverse probability, 逆概率
# E% S* I, z' S6 J3 S4 `6 L2 JInverse sine transformation, 反正弦变换
' ?2 p7 z1 ^, l& Z& [4 NIteration, 迭代 * x" Y! u( y4 Q9 g) P. z
Jacobian determinant, 雅可比行列式$ V% \" t' A% R. Q+ L
Joint distribution function, 分布函数! _5 W: i/ d$ I- P3 S
Joint probability, 联合概率
0 V1 b$ Y% t8 H$ l9 P K% U$ {0 t* T/ bJoint probability distribution, 联合概率分布- |$ H+ s# h4 K0 p N& r- K3 I( e
K means method, 逐步聚类法9 A" C; \: M2 F- C' n! x1 R- I
Kaplan-Meier, 评估事件的时间长度
5 i- N4 y3 q3 Y% eKaplan-Merier chart, Kaplan-Merier图
+ L5 ~9 A# ]( o1 v9 q: @8 A0 R+ [! QKendall's rank correlation, Kendall等级相关8 H1 @4 ~0 G$ Z( `. K- f* t
Kinetic, 动力学
1 ~7 j5 n" ?2 z( S( RKolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验
( L5 v$ e$ z* Y, _, XKruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验3 G6 M8 Z; d# N5 v; `
Kurtosis, 峰度; r& m2 I! v8 N0 V* T: R
Lack of fit, 失拟
8 ]8 I9 r0 [4 x! F3 sLadder of powers, 幂阶梯
+ D3 I1 X$ m9 X' d jLag, 滞后2 C( e8 t" ]5 U1 n: b/ l, j z
Large sample, 大样本
6 ?6 E \" ~( s$ Q& D/ QLarge sample test, 大样本检验9 c; B5 Y7 k0 q3 Y
Latin square, 拉丁方0 J, E8 i! [: K J6 p' Y) Q2 N3 X
Latin square design, 拉丁方设计
! H, D( p* k" ?4 {) @3 ]Leakage, 泄漏
4 n4 |3 p$ i! n5 w, \* RLeast favorable configuration, 最不利构形2 R$ O' i v" w& R8 D! i
Least favorable distribution, 最不利分布6 F. ^8 C. ^( a% ]" |0 |
Least significant difference, 最小显著差法& f' v% K" s- H W" p7 u1 R
Least square method, 最小二乘法: D: P. U6 i: ~) Q
Least-absolute-residuals estimates, 最小绝对残差估计- _' t d% D* `" u: D9 Q
Least-absolute-residuals fit, 最小绝对残差拟合' D! ?6 n8 L0 j1 N6 m* ^- _
Least-absolute-residuals line, 最小绝对残差线- l% A( }* B$ `* l/ Y/ M5 [
Legend, 图例1 d9 A& I! Q6 l
L-estimator, L估计量7 u. t. r5 u! B) n" z# z
L-estimator of location, 位置L估计量
2 w& K! O0 X; }* e* aL-estimator of scale, 尺度L估计量
% p5 V0 |9 u; @Level, 水平/ b2 A. g5 ?; |. H2 w7 U
Life expectance, 预期期望寿命
% Q# e- ?* x8 f3 [3 g# ~Life table, 寿命表- u" @( i. E8 @' g2 ~
Life table method, 生命表法
; X7 \+ l/ _$ Q" D4 z( V! g1 e9 xLight-tailed distribution, 轻尾分布
5 m8 J7 A9 h& A1 v4 A: U5 [ a% ^7 FLikelihood function, 似然函数" l" [# F- u5 ? D
Likelihood ratio, 似然比
; Z7 m2 K4 z# p7 c1 dline graph, 线图
6 }+ R: C: o" i$ w. Y; y0 NLinear correlation, 直线相关+ w7 ]; G/ r. x4 v: o
Linear equation, 线性方程
$ g% G! g' ^( r( L- I$ g! }Linear programming, 线性规划
: {' t! n7 A, N$ Z) Q! ?- T0 n) bLinear regression, 直线回归
k* z& k3 f. J/ Z& s! w% ~1 ~* q3 }! dLinear Regression, 线性回归) j2 l. h; ?' O9 h# t
Linear trend, 线性趋势
0 t( P( D! h6 ~3 ILoading, 载荷
5 S, @" }1 r( B" r* _5 j! nLocation and scale equivariance, 位置尺度同变性' x! c; H1 m; N
Location equivariance, 位置同变性
, D) M. U" K, u# v, N, Z7 ]Location invariance, 位置不变性0 y7 _- s3 |7 p1 u# M
Location scale family, 位置尺度族2 R9 a" t# e* u6 v
Log rank test, 时序检验 : X" y3 f( _0 Y
Logarithmic curve, 对数曲线
2 q L5 h: e4 H( R* \& DLogarithmic normal distribution, 对数正态分布8 m/ h/ x: d+ e: Y/ {$ f- t7 f
Logarithmic scale, 对数尺度
. t' e+ K: g4 k! l9 dLogarithmic transformation, 对数变换, r5 g# [. B" X9 o8 C( x/ l4 D3 B
Logic check, 逻辑检查' Y$ ^$ o+ ~' O1 t$ t8 V
Logistic distribution, 逻辑斯特分布
. s2 o `: }$ r7 R8 f7 x7 mLogit transformation, Logit转换/ d! B) p5 D& f7 O6 s
LOGLINEAR, 多维列联表通用模型 ; R4 Z# ], Q9 y4 G
Lognormal distribution, 对数正态分布2 _( p# P2 r& V' y- I( s+ ]
Lost function, 损失函数
8 [# G* L9 e' F( k% U& LLow correlation, 低度相关( V: u, _0 p- s0 c! |
Lower limit, 下限
2 [( b/ u2 S9 B" S' Q/ R1 k6 u' ALowest-attained variance, 最小可达方差
9 v) D5 M l, i1 s$ ULSD, 最小显著差法的简称6 k" T |2 P* J8 i* D* J9 @, o
Lurking variable, 潜在变量
+ j8 \/ A+ r4 b1 J- SMain effect, 主效应
9 u1 z) G1 M3 nMajor heading, 主辞标目
8 Y% I2 T$ i. q4 X5 k( @: pMarginal density function, 边缘密度函数
% _% a3 D7 h6 ?' U! y; VMarginal probability, 边缘概率; B8 ~1 l9 G4 }. e, q
Marginal probability distribution, 边缘概率分布
5 U( N/ m" Q( H- a$ C6 P# Q5 qMatched data, 配对资料
4 {) h) M" t6 }# ?& V& bMatched distribution, 匹配过分布
6 \% D( I) X: Q8 O! L0 e) G! nMatching of distribution, 分布的匹配 C5 o8 X! O8 @. C
Matching of transformation, 变换的匹配$ I0 k" _ {4 S4 y
Mathematical expectation, 数学期望6 R, |; G5 f8 c6 s
Mathematical model, 数学模型
/ D, K; L, A; D5 {* |& ?& TMaximum L-estimator, 极大极小L 估计量
/ M4 C0 J( ?7 D& w1 _Maximum likelihood method, 最大似然法+ F1 ?( m5 a8 I) }7 ?" O/ v
Mean, 均数5 X: }/ F1 P6 U5 l5 ?2 @
Mean squares between groups, 组间均方( {& Z, Q0 x1 R$ f( _
Mean squares within group, 组内均方
4 B2 |7 j( Q: a& _: Z5 [Means (Compare means), 均值-均值比较
6 j& H, i+ T3 k+ KMedian, 中位数0 i6 p0 @4 \2 x2 m* Z* x
Median effective dose, 半数效量
5 Y i! o( ]5 MMedian lethal dose, 半数致死量% c0 C/ ~# y% Z
Median polish, 中位数平滑, J' K" ?, k9 O0 M! I
Median test, 中位数检验 |# A2 S! s' k `3 A
Minimal sufficient statistic, 最小充分统计量
5 l: Y x+ C# i* y6 U( y/ N9 DMinimum distance estimation, 最小距离估计
+ x) }6 t* q; mMinimum effective dose, 最小有效量
- T" P; t+ m! f( @6 X9 g( ^Minimum lethal dose, 最小致死量
1 v, i& j( V9 W* }& _. \: EMinimum variance estimator, 最小方差估计量
$ Q8 Y: O$ b. S1 A: [MINITAB, 统计软件包
' t! O; c( K! S" r( R; vMinor heading, 宾词标目$ D) }; N( ?# v4 C. d
Missing data, 缺失值
# Z/ }+ r% W* M- Q5 G9 ]) ^; j2 CModel specification, 模型的确定4 r' i/ q+ Z7 M
Modeling Statistics , 模型统计. E, ^, O+ C: `8 P) a- ^1 m) N
Models for outliers, 离群值模型
, g/ y# A9 C3 bModifying the model, 模型的修正
& M2 A+ S# U" S$ ^7 {6 hModulus of continuity, 连续性模0 [; f, e P7 g9 j
Morbidity, 发病率 ( z7 C8 a- Y6 R9 e, o7 y' s
Most favorable configuration, 最有利构形
, N: W3 w4 [' c( L( `# zMultidimensional Scaling (ASCAL), 多维尺度/多维标度; Y V2 Z, Y4 i; J. g4 G8 `- B
Multinomial Logistic Regression , 多项逻辑斯蒂回归
& y1 h% G6 o2 C( g' W: {- G2 fMultiple comparison, 多重比较, h% M0 j Z' V: Z: g
Multiple correlation , 复相关8 C7 [) N& z% b! |4 c2 |% A
Multiple covariance, 多元协方差7 ?" P+ ?% p) `0 C
Multiple linear regression, 多元线性回归. y! Q, N1 [- D
Multiple response , 多重选项
# p( t# n" y2 S3 ~Multiple solutions, 多解8 E) j8 C d J5 G6 a+ S3 m$ J
Multiplication theorem, 乘法定理
+ L0 d/ r1 f; k: _1 ~) tMultiresponse, 多元响应( t. j7 D* J. Z& | y9 j4 W- y
Multi-stage sampling, 多阶段抽样7 l5 m0 o9 _# g3 @& l2 r
Multivariate T distribution, 多元T分布
; h& C! N% M; I" d! w% j+ i( a9 nMutual exclusive, 互不相容9 s$ ` R# ?* ^# U
Mutual independence, 互相独立. k c, L) B6 X- t) p+ G+ i' K; F# f
Natural boundary, 自然边界, v; s- h! W8 `* n' e5 q% Y
Natural dead, 自然死亡
, J3 K$ o% c( S( |# Y o+ aNatural zero, 自然零
$ t( I6 V7 C" [0 Y) ~( j: v" I. XNegative correlation, 负相关6 O1 q, y. l' ]9 |2 z' B- i
Negative linear correlation, 负线性相关) R3 c% D" y+ x/ t8 ]! P
Negatively skewed, 负偏) I) Z% u2 z2 w4 Z
Newman-Keuls method, q检验
/ o2 g* m1 Q3 ~* T, ?NK method, q检验) a4 K& d; t& H/ E
No statistical significance, 无统计意义
) `, m( N6 s: |9 v- M: ]Nominal variable, 名义变量
, g+ Y; A: s6 O. O: M4 pNonconstancy of variability, 变异的非定常性
@% w) b5 d: ~8 @& wNonlinear regression, 非线性相关& r1 R. o" H- y5 U; G+ w+ j; k
Nonparametric statistics, 非参数统计
6 d8 B9 U- C' t3 @2 ?7 @. X! dNonparametric test, 非参数检验
- _5 N: A4 K$ p, P) Z4 t& U6 w6 LNonparametric tests, 非参数检验1 F' K% l2 g B l. G, P
Normal deviate, 正态离差7 H9 P7 C) {2 j3 F
Normal distribution, 正态分布
3 `# I# p- K" S$ \( B- qNormal equation, 正规方程组
4 ]( g2 C, R' `+ r& ~9 `Normal ranges, 正常范围
5 K4 X O1 i% R$ R. RNormal value, 正常值
4 E, x$ v% o& o5 o' o+ J7 iNuisance parameter, 多余参数/讨厌参数2 j. d1 ?# T( W2 E2 p' d
Null hypothesis, 无效假设 + B" V/ d; J% {# J; Y+ m
Numerical variable, 数值变量5 P2 z4 p0 T1 B, P' L+ p, e. r
Objective function, 目标函数
2 L2 U# M5 d9 ^5 n7 G* ]7 L+ iObservation unit, 观察单位
4 z8 x# N. G9 @8 Z) AObserved value, 观察值# K) t$ b0 o0 j2 f8 Z& ^+ i/ u4 k, ?
One sided test, 单侧检验
: Y$ s) n2 w' } uOne-way analysis of variance, 单因素方差分析
( K# W8 V5 k4 ]6 p/ Y8 r+ y0 kOneway ANOVA , 单因素方差分析, `) d' g( l4 |1 |' `' ~$ T
Open sequential trial, 开放型序贯设计5 l& @$ n5 p$ c7 h0 \
Optrim, 优切尾
0 V: d+ `: R8 ]Optrim efficiency, 优切尾效率
+ E0 y2 s( T% s U& sOrder statistics, 顺序统计量0 f0 E& G( d" u: [; n
Ordered categories, 有序分类
/ d* j9 w) r/ e J$ f8 H4 D8 IOrdinal logistic regression , 序数逻辑斯蒂回归5 F# }% Q. ?9 c6 a& I- t
Ordinal variable, 有序变量( k2 ~; E. t4 u' h, g
Orthogonal basis, 正交基
' p; L" b6 K( D' I. N l' NOrthogonal design, 正交试验设计
5 Z8 ^, ^6 q+ n+ o7 }1 ]& XOrthogonality conditions, 正交条件! Y8 v- G T" v! v- r1 u$ w
ORTHOPLAN, 正交设计
8 P/ I0 c" r5 ], a% X! p) L k/ dOutlier cutoffs, 离群值截断点
& J1 n6 k9 s( c9 u+ q) XOutliers, 极端值
- U; ^5 G' `/ }$ wOVERALS , 多组变量的非线性正规相关 * |) X& _# Z4 l) Q$ o
Overshoot, 迭代过度
. q! E f2 O' Z9 n- bPaired design, 配对设计
! d: c& z3 e# W" @8 VPaired sample, 配对样本3 z6 Z6 `6 v2 Q" i0 _/ M8 x
Pairwise slopes, 成对斜率/ `0 A. F. a+ a7 P
Parabola, 抛物线( ~1 d5 G! W- o( z5 T
Parallel tests, 平行试验+ f3 k0 m: z1 l( E) e
Parameter, 参数* X0 H# E( W8 q0 t
Parametric statistics, 参数统计
3 a1 N" | H( U5 v0 ?1 W& ]Parametric test, 参数检验
; I8 O7 {- J0 Y" fPartial correlation, 偏相关5 n0 t3 `* I: G0 ^/ i/ x
Partial regression, 偏回归5 |% {# W O' r5 Y
Partial sorting, 偏排序1 A- O+ c4 j: F+ \) f$ Q
Partials residuals, 偏残差
0 t4 ]4 H* @/ j5 V/ C% `, QPattern, 模式" T7 G& V, T4 T& A1 I; L
Pearson curves, 皮尔逊曲线6 ^$ O7 |8 R+ w8 _9 V6 ?6 Y5 i5 X
Peeling, 退层8 ~4 }* u& D l8 P; T( \& X0 e
Percent bar graph, 百分条形图
8 f* t0 O [% W) `% W! {6 y9 qPercentage, 百分比
) Z# C1 H) @ F* p# VPercentile, 百分位数' l. w# h3 ^* b) w% `/ v0 I7 A
Percentile curves, 百分位曲线* G" D# ?) y+ u" V& j+ a2 A5 k& m H
Periodicity, 周期性6 j6 h" d: } a6 {3 r6 T+ U
Permutation, 排列
2 h4 k2 s5 l [- I# S' ~ jP-estimator, P估计量/ \8 p7 L8 C- P, k4 ~9 q) \
Pie graph, 饼图 F4 Z- L x) J5 x
Pitman estimator, 皮特曼估计量
7 A; d7 I( e: h- o6 g- C. l8 VPivot, 枢轴量1 A( ^. K4 @7 o* |
Planar, 平坦- [1 t8 W& s) X7 F1 J7 V& y
Planar assumption, 平面的假设7 I4 ? @: E9 R+ a9 V
PLANCARDS, 生成试验的计划卡1 O' t/ U- ~* C& T( {2 |6 D, L
Point estimation, 点估计+ P- \/ C6 \* A
Poisson distribution, 泊松分布3 O# G- E k8 R( |
Polishing, 平滑
, X& e9 T" [: j" C3 EPolled standard deviation, 合并标准差
4 a: t" l8 \ {9 i1 PPolled variance, 合并方差
0 j/ Z7 s% e3 M" `3 x/ U7 O4 NPolygon, 多边图
`/ n1 V% a K$ o0 ?7 r0 J- [Polynomial, 多项式, f. M2 }: \& K& k; P! d$ ?
Polynomial curve, 多项式曲线
. b7 v' K; A4 X$ EPopulation, 总体
3 l/ }5 E5 v0 }Population attributable risk, 人群归因危险度
3 i9 P( l( \; DPositive correlation, 正相关
) f0 B! f( C, L6 v1 CPositively skewed, 正偏
9 O q+ F/ G1 U+ U. RPosterior distribution, 后验分布+ a7 R- j+ s9 b5 `
Power of a test, 检验效能
$ X8 u6 v' y% ?% h4 r l, s6 MPrecision, 精密度6 t2 R0 T5 u0 G. U' l' i
Predicted value, 预测值0 p0 a, r& I$ k2 r1 K& ?1 v
Preliminary analysis, 预备性分析
. O5 {/ g+ M0 _& a' RPrincipal component analysis, 主成分分析
: h7 \2 _+ e& Z& l X* lPrior distribution, 先验分布& }4 j4 G- w. w
Prior probability, 先验概率* | n- T/ ?# L4 @! F
Probabilistic model, 概率模型6 v6 q/ \' d& v# ~0 `
probability, 概率
5 Z9 Y( x- ]! m( Y( [8 ^Probability density, 概率密度8 k- ` n5 S9 {, X1 u) N
Product moment, 乘积矩/协方差
A; [* z% ^* GProfile trace, 截面迹图
i! B5 T5 m# I7 c1 ^Proportion, 比/构成比1 U/ e- f. u- x. Z1 q; V
Proportion allocation in stratified random sampling, 按比例分层随机抽样
, m, o: ^+ N; p) |, x0 O, y" IProportionate, 成比例
& e+ D" p& S; p9 k3 CProportionate sub-class numbers, 成比例次级组含量1 }# u* U. ]' Q- i
Prospective study, 前瞻性调查- M8 U; b: |; l" }5 e4 Q6 N
Proximities, 亲近性 " E- W2 Q3 U- ]
Pseudo F test, 近似F检验6 g$ h R! O7 F! M* z6 z0 Z
Pseudo model, 近似模型2 x! J$ H y s# W2 ~7 \
Pseudosigma, 伪标准差
; o* f$ s# F R3 `& z7 ZPurposive sampling, 有目的抽样) j2 u6 \# f% ^
QR decomposition, QR分解* G8 u8 t) l+ f1 H: q9 g
Quadratic approximation, 二次近似; f8 t$ ~5 ]. x( s8 m3 O ^1 V
Qualitative classification, 属性分类/ Y6 h- ~/ p/ t( o& i3 T1 F
Qualitative method, 定性方法 l8 _. B& T' Q/ R
Quantile-quantile plot, 分位数-分位数图/Q-Q图
* z0 ?/ i" C! A! rQuantitative analysis, 定量分析& p( X* Y/ p" p# V
Quartile, 四分位数 @& E" f) M: g
Quick Cluster, 快速聚类
1 I' b5 `" x9 r- {0 J9 a3 uRadix sort, 基数排序
1 C$ ]* E4 k8 O1 QRandom allocation, 随机化分组
( e6 G: @ m0 _Random blocks design, 随机区组设计
4 {2 @, C& W4 j5 {7 w! _- BRandom event, 随机事件
& i2 ~" S6 u0 b- _7 ~8 p- JRandomization, 随机化5 N: ?: k: U% x8 H% _9 s7 W
Range, 极差/全距
4 n7 d* H, h4 _+ _ U$ KRank correlation, 等级相关
2 H7 Y1 ~9 l9 M6 N9 HRank sum test, 秩和检验; |8 \' S3 B7 N. A
Rank test, 秩检验# f1 b0 f3 {2 J6 }; S$ f
Ranked data, 等级资料
: q$ [( M7 x2 U4 x: m) vRate, 比率
/ U/ r- x* R% g( A B5 sRatio, 比例 Q8 p+ |& c v; K& y) \/ X
Raw data, 原始资料
: v7 U( m+ V- u& }. D$ S; BRaw residual, 原始残差% |. W1 c6 Z, C, e( Q
Rayleigh's test, 雷氏检验/ @. ^7 Q+ d% b
Rayleigh's Z, 雷氏Z值 6 V) Y) k) s! w" a7 o) R" C
Reciprocal, 倒数
% W- d8 y3 i. q b7 K* gReciprocal transformation, 倒数变换7 T f# W* Y8 b3 u
Recording, 记录
/ a! Z( h3 ?% m$ v: HRedescending estimators, 回降估计量 N8 e- a; e8 J& ?
Reducing dimensions, 降维
x. E5 ?* ]" g" V T. C% PRe-expression, 重新表达
3 M% O" s0 j/ u4 F3 P# oReference set, 标准组2 ~2 `. ^5 q+ _
Region of acceptance, 接受域
( A0 X& g% `7 n3 T7 a! s+ WRegression coefficient, 回归系数9 H l' ]7 F# U
Regression sum of square, 回归平方和! \. i4 O c0 E1 @5 t- _
Rejection point, 拒绝点
1 l6 |1 T' d0 Y4 f: SRelative dispersion, 相对离散度
" Q3 Z$ `! t- n/ H0 s: xRelative number, 相对数
3 i b; s) o* q8 WReliability, 可靠性( j W8 K8 {% T3 E3 L0 U
Reparametrization, 重新设置参数
+ y* U, H) U5 B# @' M: GReplication, 重复$ c* W j( Z' T% i) C7 f) y
Report Summaries, 报告摘要
: r: v, Q; m b% N9 P+ T$ ]; Z9 HResidual sum of square, 剩余平方和, y9 p( b4 B: }; I
Resistance, 耐抗性
3 W f1 G& W. f6 K: {Resistant line, 耐抗线
. u7 f5 ?$ X' y1 j4 RResistant technique, 耐抗技术4 \0 p, q" G! q7 k! V/ p8 m4 g
R-estimator of location, 位置R估计量
6 l. d( Z+ s* D& @R-estimator of scale, 尺度R估计量
; j4 Z& Z7 I& kRetrospective study, 回顾性调查8 v6 I l& v! A: k* x: f. n
Ridge trace, 岭迹
4 y& G T% B6 C% T9 d% TRidit analysis, Ridit分析
' j2 b1 @0 y0 f; H0 \9 R5 R' yRotation, 旋转
$ y1 }* Y2 v! H0 mRounding, 舍入- J' i. z* _; U6 X) M( r0 A }
Row, 行 J" d; f, x3 v$ b1 C
Row effects, 行效应
/ O0 _7 @8 T8 nRow factor, 行因素3 l7 _- X5 M0 `6 h
RXC table, RXC表
5 P5 }. D6 G- v8 c+ q' QSample, 样本
' L! S5 M7 C* {Sample regression coefficient, 样本回归系数
: ~- g" A* D" T1 hSample size, 样本量
k1 x/ h! e% sSample standard deviation, 样本标准差- u h, ^, }1 d5 \
Sampling error, 抽样误差
$ s% |/ y, g6 v$ xSAS(Statistical analysis system ), SAS统计软件包5 D+ \6 o' B3 E/ B/ R
Scale, 尺度/量表
1 R* H5 U. \* @# UScatter diagram, 散点图" r; ]; i- p$ I6 z
Schematic plot, 示意图/简图1 r% |( ?: |6 C4 [( o
Score test, 计分检验& L4 o* }+ p. A/ d
Screening, 筛检
5 N# ~8 \+ f+ d$ r/ o; u$ g. f6 oSEASON, 季节分析
* {$ i9 t5 Y: u) G: [4 sSecond derivative, 二阶导数
: Y. m7 n c2 x9 b0 TSecond principal component, 第二主成分
8 I# f/ Y9 y' C$ H4 W' W M+ J8 xSEM (Structural equation modeling), 结构化方程模型 $ B# c! C Y- Z
Semi-logarithmic graph, 半对数图) [' U2 P) Q6 |, ~" ]1 x) \3 o
Semi-logarithmic paper, 半对数格纸
0 l( ~3 F4 Y E- I! ASensitivity curve, 敏感度曲线
5 [4 y) w0 F+ M2 X$ `( L# [Sequential analysis, 贯序分析) g ?( H: S- A
Sequential data set, 顺序数据集
3 V7 ~; [' S5 W6 l- x1 y0 OSequential design, 贯序设计
( H+ l6 t8 F8 F2 u7 ]6 g$ ISequential method, 贯序法
# z# V V# m L- C( e, j8 ?5 [$ W# }# xSequential test, 贯序检验法
. R" p% t6 q7 s* G1 K; gSerial tests, 系列试验8 |" Q/ L+ N2 O4 d
Short-cut method, 简捷法
( h8 Q8 A& A3 @/ S5 XSigmoid curve, S形曲线
6 y. m2 Q( k" ]- X8 `* _Sign function, 正负号函数2 b8 ?7 q# p+ w
Sign test, 符号检验
8 s) I3 ]) y0 RSigned rank, 符号秩
' [* @: p4 M* R4 @2 w) V; ~Significance test, 显著性检验$ R+ _: r8 p$ R ]; ^7 E
Significant figure, 有效数字' D( ^9 u p6 O
Simple cluster sampling, 简单整群抽样
* z, @- R8 W6 q& `Simple correlation, 简单相关
6 [5 Z+ W- d. K4 kSimple random sampling, 简单随机抽样
* n, i1 G8 u$ W( k! h/ P6 p, jSimple regression, 简单回归
, Z: a5 l4 `7 k5 \/ z1 jsimple table, 简单表, K, l3 k3 I3 z/ i$ b) S, w" q
Sine estimator, 正弦估计量# ?) E% U, f8 D O: o6 |0 _
Single-valued estimate, 单值估计
# W3 i2 Q' ^8 x0 E# x+ @$ t( `Singular matrix, 奇异矩阵9 }: R! D7 J0 v$ h, B, {6 N
Skewed distribution, 偏斜分布8 c6 S4 l1 ?5 j
Skewness, 偏度! [) K5 a$ Z$ p' m- H- {2 Q
Slash distribution, 斜线分布( e( R4 Z6 n. j. K
Slope, 斜率
- N' I# _8 J% j7 c9 f) _6 f- b' v: NSmirnov test, 斯米尔诺夫检验
) N, p i( p+ N! T) B, v5 Z) ISource of variation, 变异来源% V0 J& m. t) U* J& q
Spearman rank correlation, 斯皮尔曼等级相关/ ]# [$ i. t1 h* B! O
Specific factor, 特殊因子
( y4 J9 M" L4 fSpecific factor variance, 特殊因子方差
, {3 F; B+ U: w+ I5 h/ ~4 JSpectra , 频谱
: {8 B7 q( a" d! j; I* e/ BSpherical distribution, 球型正态分布
; U' W4 t/ y Z4 a$ s/ ~: n* \Spread, 展布
I/ o/ s, E! O1 o# n# C3 w) YSPSS(Statistical package for the social science), SPSS统计软件包
" {4 R) [6 `- F- Q0 G+ ?% PSpurious correlation, 假性相关8 v6 v4 O( R$ E' A2 M* Z
Square root transformation, 平方根变换) }! i5 h, a7 N# Q0 L- s3 v
Stabilizing variance, 稳定方差8 k& B* I; ?* n0 J2 e( G; k' f
Standard deviation, 标准差
. Y8 L8 S3 P7 _. F$ _9 y5 l0 t4 }Standard error, 标准误. Z) }& g, N! X" n. x! I
Standard error of difference, 差别的标准误
5 s# z, L( K/ i' d$ j, KStandard error of estimate, 标准估计误差
8 j4 H, N, I( J/ K$ z XStandard error of rate, 率的标准误
. E ]" B) v5 o' k. EStandard normal distribution, 标准正态分布( [( e7 t- \7 q% f+ `* r; O
Standardization, 标准化( y! y9 R+ S3 @# A( T9 [9 A# \5 V
Starting value, 起始值
0 _) s1 F, s+ g# Z8 rStatistic, 统计量6 }0 }4 Y( s; A5 g
Statistical control, 统计控制, I7 f, {$ c; `* Z1 z0 u
Statistical graph, 统计图
& q" z" |1 B1 l; j- ?Statistical inference, 统计推断
" H; h# M1 I+ gStatistical table, 统计表 s4 r2 G3 ~1 f6 E
Steepest descent, 最速下降法
+ [* C- p/ p+ _. A4 UStem and leaf display, 茎叶图1 J% M/ W5 ?- P5 L
Step factor, 步长因子
- K6 l8 c1 t* H; t2 |. FStepwise regression, 逐步回归
5 C1 B: W% f+ P; _+ u% S+ ~! CStorage, 存
! j! n, h5 D7 B1 z) W1 WStrata, 层(复数)
5 T. n9 Y3 _, F! f* C: |Stratified sampling, 分层抽样
# k' Z$ y* {9 d& u4 \$ PStratified sampling, 分层抽样
# t0 X% m4 A5 ^% i$ e& |, m% L. s- wStrength, 强度5 B% I+ b' T- N d( {$ u1 c- Z
Stringency, 严密性* {* C9 P; Y% }0 q) x ]# \$ x
Structural relationship, 结构关系
3 }+ {; v/ A( j2 [9 B/ pStudentized residual, 学生化残差/t化残差
9 o( ^' j7 q/ V9 M8 k/ e$ bSub-class numbers, 次级组含量
1 A7 Q" r2 S6 x# `- GSubdividing, 分割
8 }* V8 S7 N$ l2 n0 nSufficient statistic, 充分统计量
/ e4 @9 R! @, TSum of products, 积和' e3 x1 k* n6 e) g" Y" m0 P
Sum of squares, 离差平方和
% X; p( H- i C {$ P! h. VSum of squares about regression, 回归平方和
: o: W" r+ i9 T, ~$ n; E) j9 kSum of squares between groups, 组间平方和
+ K0 f( A* S$ A, o6 l$ ^Sum of squares of partial regression, 偏回归平方和) P: E" c6 y, e, Q
Sure event, 必然事件; |3 `) ~9 j: N+ ]
Survey, 调查
0 L6 c: q8 I4 K7 N( @Survival, 生存分析
1 Y `8 w" _3 M: mSurvival rate, 生存率
, d! @) O: y) ~) ?0 G: fSuspended root gram, 悬吊根图
+ v" W o6 e6 ]% N, CSymmetry, 对称
1 B( q/ [! v# c, Y. K2 `% \8 r; |Systematic error, 系统误差
% |; v+ b* c- B3 ~Systematic sampling, 系统抽样
" H G9 M" t$ {+ T7 \Tags, 标签
+ K6 ]* J: U8 n" d1 e1 PTail area, 尾部面积7 W. B+ D, e! `$ i% D
Tail length, 尾长3 w! v# R; @( ^; n5 e4 \, p8 Q- r
Tail weight, 尾重$ y. _. m# e' m) y# \% u
Tangent line, 切线/ F8 m! R0 B8 `8 V0 F% X A
Target distribution, 目标分布( B0 ~" s4 g) n0 Q9 ~' z9 f
Taylor series, 泰勒级数
- e( T2 x1 E) F! g* LTendency of dispersion, 离散趋势
8 D3 `6 o$ G& T9 u( h c+ s( t" [- ETesting of hypotheses, 假设检验" f5 `8 R5 L# j7 e4 q
Theoretical frequency, 理论频数
0 b6 {5 ~. l8 JTime series, 时间序列
& S' ?4 p- [0 K) Y) WTolerance interval, 容忍区间
& D% N' H6 h. u1 O0 a: \0 O6 R: qTolerance lower limit, 容忍下限4 o; o7 y% `" n7 o* v
Tolerance upper limit, 容忍上限( m+ S: e8 Y. V( ]
Torsion, 扰率
) [3 W P4 P. x) i4 i. \Total sum of square, 总平方和( S, @+ p. G3 F: T; W0 W
Total variation, 总变异# w1 W; J- M: _0 N. y8 R
Transformation, 转换
( v3 a2 c) M. fTreatment, 处理
I8 G k; u" H3 |5 _Trend, 趋势
2 M) Z/ b5 O8 \, @Trend of percentage, 百分比趋势
+ T F& x) Q5 S$ ]+ gTrial, 试验
2 p- a' z6 [8 U/ `& F0 \1 M' y9 [Trial and error method, 试错法
# T* G5 Z1 J* @' s) r' KTuning constant, 细调常数
' K2 u. l! ?' NTwo sided test, 双向检验8 H& N4 C( f4 ?9 G& j/ V$ \
Two-stage least squares, 二阶最小平方
8 K6 I- m. f( ~& rTwo-stage sampling, 二阶段抽样* J8 j7 S! m& s* K$ N
Two-tailed test, 双侧检验. s. _# w& H+ w' [
Two-way analysis of variance, 双因素方差分析
4 b. z% z6 W: s3 t2 Y$ UTwo-way table, 双向表) S. k2 s! J k! z2 P
Type I error, 一类错误/α错误8 q- n( s* l' g& K* j( }8 K9 s
Type II error, 二类错误/β错误
. ]/ k: n( s R8 X# s6 BUMVU, 方差一致最小无偏估计简称2 Z+ ~+ k4 |* ?
Unbiased estimate, 无偏估计; m/ V* e/ G8 c1 d& E( n# R0 i7 ?0 }
Unconstrained nonlinear regression , 无约束非线性回归
( [. {; C1 Q; G, Q( @Unequal subclass number, 不等次级组含量% a( ?4 q' ?7 y8 u5 b9 c
Ungrouped data, 不分组资料
7 A+ O2 o9 l( l$ I/ LUniform coordinate, 均匀坐标6 y- N7 h. r# A
Uniform distribution, 均匀分布' a5 u" ]3 ]# g- v
Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计6 k! W3 e; Z/ y% p& `1 ^
Unit, 单元
3 w0 {, W. O+ p- P" cUnordered categories, 无序分类9 T* g) G( ^# u. U' e
Upper limit, 上限+ \! G6 R# k$ r% b1 [
Upward rank, 升秩/ Q1 \5 _( E3 Q! `2 s. ~( B; e0 B
Vague concept, 模糊概念
% _9 R! v( I2 n2 E) J% ~ x. G4 UValidity, 有效性5 S( s) P. N+ f
VARCOMP (Variance component estimation), 方差元素估计
+ f0 ^; `# w/ [Variability, 变异性( R( C+ ?9 i6 t& P6 ?
Variable, 变量
; q0 e! e" U: w% J5 z) jVariance, 方差$ l+ P" Y1 }# b6 j# y: K$ C2 d
Variation, 变异
; V( s' O) o ]: f7 @1 L, zVarimax orthogonal rotation, 方差最大正交旋转. k! O/ e; M- u9 z5 e) {0 b0 E6 }+ L% o
Volume of distribution, 容积' ]& {/ R" T* C [/ A
W test, W检验# M2 Q1 y) x: a, p) ~
Weibull distribution, 威布尔分布4 s$ F5 j7 n" X
Weight, 权数* ^" h/ m4 H# h2 d+ _
Weighted Chi-square test, 加权卡方检验/Cochran检验, @8 O! y( W, R' c
Weighted linear regression method, 加权直线回归
# L+ ], M- U. I9 B' }Weighted mean, 加权平均数
/ ]# w% g2 p: Q# gWeighted mean square, 加权平均方差
$ H8 J; N% u8 V( z g6 bWeighted sum of square, 加权平方和8 h$ s+ P) c6 y) ~) @, Q! d
Weighting coefficient, 权重系数) a( e5 d. Z4 Y2 w% H
Weighting method, 加权法 4 ~. g/ U6 W6 w3 X
W-estimation, W估计量
8 @0 _8 M0 e0 SW-estimation of location, 位置W估计量
: j, y7 i* ]- O% e2 Z$ ^. RWidth, 宽度8 i( ?4 z A% ?* I9 ?* R6 e# ]+ k% z
Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验
# w6 a8 L0 J U" QWild point, 野点/狂点! x3 E7 x+ j7 G( b+ c$ K# b
Wild value, 野值/狂值
" q$ @( b+ w+ zWinsorized mean, 缩尾均值" B8 z- c6 F; ~4 t2 U; t- v7 N
Withdraw, 失访
; d- D% Y' c$ Q5 J( }" s2 AYouden's index, 尤登指数. j) m. Y/ A, L- z0 u8 k E( @# M9 T
Z test, Z检验1 h# T1 f2 u: [* s4 o& G
Zero correlation, 零相关
+ A) @5 M9 b( D* `Z-transformation, Z变换 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?注册会员
x
|